
Abebe et al. Ecological Processes           (2024) 13:39  
https://doi.org/10.1186/s13717-024-00511-x

RESEARCH

Modeling the distribution of Aloe 
ankoberensis and A. debrana under different 
climate change scenarios in North Shewa Zone, 
Amhara National Regional State, Ethiopia
Haile Abebe1, Anteneh Belayneh Desta2*   and Sintayehu Workneh Dejene1 

Abstract 

Background Aloe ankoberensis M.G. Gilbert & Sebsebe and A. debrana Christian are Ethiopian endemic species cur-
rently classified as endangered and least concern, respectively under International Union for Conservation of Nature 
(IUCN) categories. Recent studies indicate that climate change is anticipated to significantly influence the distribution 
of plant species. Therefore, this study aimed to model the distribution of A. ankoberensis and A. debrana under differ-
ent climate change scenarios in the North Shewa Zone, Amhara National Regional State of Ethiopia. Thirty-six and 397 
georeferenced presence points for A. ankoberensis and A. debrana, respectively, and 12 environmental variables were 
used to simulate their current and future distributions. The ensemble model approach was used to examine the cur-
rent and future (2050 and 2070) climatic suitability for both species under three shared socio-economic pathway (SSP) 
climate scenarios (SSP 2.6, 4.5 and 8.5).

Results The performance of ensemble model was excellent for A. ankoberensis with score of area under curve (AUC) 
0.96 and true skill statistics (TSS) 0.88, and good for A. debrana with score of AUC 0.87 and TSS 0.63. The main variables 
that affected the species’ distributions were mean diurnal range of temperature, annual precipitation, and elevation. 
According to the model, under the current climate conditions, 98.32%, 1.01%, 0.52%, and 0.15% were not suitable, 
lowly, moderately, and highly suitable areas, respectively for A. ankoberensis, and 63.89%, 23.35%, 12.54%, and 0.21% 
were not suitable, lowly, moderately and highly suitable areas, respectively for A. debrana. Under future climate sce-
narios, suitable habitats of these species could shrink. In addition, under all climate change scenarios, it is anticipated 
that highly suitable areas for both species and moderately suitable areas for A. ankoberensis will be lost completely 
in the future unless crucial interventions are done on time.

Conclusions The results indicate that the future may witness a decline in suitable habitat for A. ankoberensis 
and A. debrana, which leads to increasing threat of extinction. Therefore, it is crucial to develop a conservation 
plan and enhance climate change adaptation strategies to mitigate the loss of suitable habitats for these highland 
and sub-Afroalpine endemic Aloe species.
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Introduction
Climate change has now taken a serious place on the 
global common agendum. By 2100, the atmospheric  CO2 
concentration would have doubled, and the pattern of 
precipitation would have changed, causing an increase 
in the global average temperature of 1.4 to 5.8 °C (IPCC 
2014). The greenhouse gases (GHGs) like  CO2,  CH4, and 
 N2O concentrations will rise by 47%, 156%, and 23%, 
respectively (IPCC 2021). This change is impairing bio-
diversity and associated ecosystem services (Sintayehu 
2018; Shambel et  al. 2022). The IPBES-IPCC (2021) 
report stated that changes in abiotic conditions, the phys-
ical environment, atmospheric GHGs concentrations, 
and species compositions that led to shifts in species 
ranges are all impacts of climate change. Additionally, it 
has an impact on the phenology, distribution, architec-
ture, and intraspecific and/or interspecific competitions 
of plant species (Kumar et al. 2017; Sintayehu 2018). Cli-
mate change could also lead to land use and  land cover 
change (LULCC) (IPBES-IPCC 2021). The LULCC con-
tributed to higher emission of carbon, fragmentation of 
habitats, and deterioration of ecosystem services which 
had resulted in hampered and threatened biodiversity 
and other ecosystem resources (Asnake and Amare 2019; 
Temesgen et al. 2022).

The climate change impacts are resulting in several 
ecosystem dynamics so that the research arena has ini-
tiated diverse modeling approach like species distribu-
tion models (SDMs). The SDMs are a modern approach 
to investigate the potential impacts of climate change on 
biodiversity under various global change scenarios (Kaky 
and Gilbert 2017). As global temperatures continue to 
rise, SDMs are an appropriate tool for identifying threat-
ened species, which are mostly at risk of extinction (Boral 
and Moctan 2021). In addition, SDMs relate occurrence 
point of species and spatially explicit environmental data 
such as precipitation, temperature, elevation, popula-
tion, soil type, and land use/cover to predict species dis-
tributions in space and time (Elith and Leathwick 2009; 
Borzée et al. 2019). They are often used for the manage-
ment of threatened species (Hu et  al. 2015; Kumar and 
Stohlgren 2009), management of invasive species (Eckert 
et al. 2020; Sintayehu et al. 2021), evaluating the impacts 
of climate change (Banda and Nega 2018; Sintayehu et al. 
2020a, b, c), ecological restorations (Riordan et al. 2018), 
and conservation planning (Meyer 2017). Several algo-
rithms have been used in SDMs ( Elith et al. 2011; Bar-
bet-Massin et  al. 2012). To reduce uncertainty inherent 
and to produce better accuracy in species distribution 
prediction, an ensemble model approach was used (Mel-
ler et al. 2014; Breiner et al. 2015).

The genus Aloe are among the richest genera of plant 
species in Ethiopia. There are about 46 species of Aloe 

and three subspecies, of which 67.3% are endemic that 
makes the country one of the known centers of Aloe 
diversity in the world (Edwards et al. 1997; Sebsebe and 
Nordal 2010; Sebsebe et  al. 2011). Aloe species have 
potential values for medicinal, social, environmental, 
materials, and food use (Bjorå et  al. 2015; Bula and 
Baressa 2017; Eshetu et  al. 2020), of which medicinal 
uses accounted for the highest percentage in Ethiopia 
and elsewhere in the world (Steenkamp and Stewart 
2007; Bjorå et al. 2015; Zahra et al. 2019; Anteneh et al. 
2020;). Aloe ankoberensis and A. debrana are among 
the endemic Aloe species of Ethiopia (Edwards et  al. 
1997; Sebsebe and Nordal 2010). Though, Aloes are a 
keystone species of succulent perennial plants with the 
capacity to withstand drought and high temperatures 
(Sebsebe and Nordal 2010), the current climate change 
could have affected the distribution and population of 
Aloes and other endemic species in Ethiopia.

In Ethiopia, studies on historical climate variability 
reveal that the average annual temperature has risen 
by 0.6 to 0.8  °C, while there has not been a significant 
change in average annual precipitation, albeit with a 
tendency for a decrease in the central part of the coun-
try and an increase in other regions (EPCC 2015). Pro-
jections indicate that by the end of the twenty-first 
century, the average annual temperature will rise by 1, 
2, and 5  °C under representative concentration path-
ways (RCP) scenarios (2.6, 4.5, and 8.5), respectively, 
accompanied by a corresponding 4 to 12% increase in 
average annual precipitation compared to 1975–2005 
(EPCC 2015). A. ankoberensis and A. debrana are likely 
affected by these climate changes. In addition, habitat 
loss due to agriculture and infrastructure expansions, 
and increasing rate of settlements poses major threats 
to the stability of Aloe species’ wild population in their 
ecosystems (Eshetu et  al. 2020). The IUCN conserva-
tion status indicated that A. ankoberensis was endan-
gered (Weber and Sebsebe 2013a) while A. debrana 
was under least concern categories (Weber and Sebsebe 
2013b) and qualify categories with Red List. These data 
coupled with the recent higher rate of local commercial 
exploitation may aggravate the wild population status 
of these Aloe species in their natural habitat. Under-
standing how A. ankoberensis and A. debrana respond 
to these threats is crucial for designing sustainable and 
effective conservation strategies. Therefore, the objec-
tives of this study are to: (1) identify and map current 
and future suitable areas for A. ankoberensis and A. 
debrana under different climate change scenarios, (2) 
detect the change in suitability area for both species 
under different climate change scenarios, and (3) assess 
impacts of climate change on the distribution of Aloe 
species.
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Materials and methods
Study area
This study was conducted in North Shewa Zone of 
Amhara National Regional State, Ethiopia. It is situated 
within 39° 0′ 0″–40° 0′ 0″ E and 9° 0′ 00″ to 10° 0′ 
00″ N and it covers total area of 16,172.52  km2 (Fig. 1). 
Unpublished data from North Shewa Zone Agriculture 
Department Office (NSZADO) indicates that 38.86% 
of the area is plain, 23.4% rugged topography, 25.89% 
mountains, and 11.85% valleys (NSZADO 2020). The 
elevation ranges from 937  m above sea level at Berehet 
district (referred as Woreda in Ethiopia) (Nigate and 
Girma 2018) to 3700  m above sea level at Ankobere 
Woreda (NSZADO 2020). These elevation ranges are 
characterized by four major traditional agro-ecological 
zones namely: Kola at lowland (21.96%) Woina-Dega at 
midland (45.58%), Dega at highland (32.02%), and Wurch 
at alpine (0.46%) topographies (NSZADO 2020).  The 
area is characterized by bimodal rainfall, long rainy sea-
son runs from June to mid-September locally called 
Kiremt (summer) and short rainy season between Febru-
ary and April locally called Belg (autumn) (Girma 2017). 
The mean annual rainfall ranges from 600 to 1250  mm 
and the mean annual temperatures range from 8.7 to 
20  °C. At high altitudes, the wet season is characterized 
by a combination of rainfall, frequent fog and occasional 
snow, and the dry season is characterized by frost (Girma 

2017). The predominant land use types were 38.54% of 
cultivated land, 14.13% of shrubland, 8.62% of forest land, 
5.49% of grassland, 21.08% of settlement and other infra-
structure, and 12.14% of bare land (NSZADO 2020). The 
study area is part of the Shewa floristic region of Central 
Ethiopia known to harbor many endemic plant species 
(Friis et al. 2010).

Study species
A. ankoberensis and A. debrana are among the endemic 
Aloe species of Ethiopia. They are found under order: 
Asparagales, family: Asphodelaceae and genus of Aloe 
Linneus (Edwards et  al. 1997; Chase et  al. 2016). The 
specific epithets ‘ankoberensis’, refers to the place, Anko-
ber and ‘debrana’ refers to the locality Debre Berhan in 
Shewa floristic region of Ethiopia where the type collec-
tions and their descriptions have been based.
A. ankoberensis is pendant shrub with up to 6 m long 

stem hanging down cliffs. It has numerous leaves with 
2–3  mm long; marginal spines of 7–9 per 10  cm; inflo-
rescence with 1–6 cylindrical racemes of 6–18 cm long; 
perianth cylindrical and 35–40 mm long, 6–10 mm wide 
when pressed, bright orange red; pedicels is 6–25  mm 
before fruit and up to 10–30  mm including fruit and 
dark brown with pale round spots; and bracts ovate-lan-
ceolate with acute tips (Edwards et al. 1997). It grows in 
sub-Afroalpine vegetation type, on cliffs or steep rocky 

Fig. 1 Location map of the North Shewa Zone covered in this study
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slopes (Fig. 2a) and with the elevation range of 3000 up 
to 3500 m above sea level (Friis et al. 2010; Sebsebe and 
Nordal 2010). The flowering period is from October to 
February (Sebsebe and Nordal 2010). Aloe debrana is 
a stemless Aloe characterized by suckers from the base 
to form small groups with very dense rosettes and dull 
green colored leaves of spreading and recurved. The 
leaves are (25–60) × (7.5–15) cm long with marginal teeth 
up to 7–14 per 10 cm with 2–4 mm long red tips. Inflo-
rescence ca. 100  cm long, compoundly branched. peri-
anth cylindrical and (17–30) × (4–6)  mm when pressed; 
the pedicels become 10–15  mm before fruit and grow 
up to 17  mm long during fruit period; and bracts are 
ovate-triangular and scarious (Edwards et al. 1997). It is 
found in dry evergreen Afromontane forest and grass-
land complex vegetation type specifically in undifferenti-
ated Afromontane forest, gentle slopes (Fig. 2b) and with 
the elevation range of 2000 up to 2700 m above sea level 
(Friis et al. 2010; Sebsebe and Nordal 2010). The flower-
ing period is from December to February (Sebsebe and 
Nordal 2010).
A. ankoberensis is used for antimicrobial activity, pre-

vention of soil erosion, honey bee plants, treatment of 
malaria, insect repellent, and wound healing (Eshetu 
et  al. 2020; Nigus et  al. 2020). A. debrana is used for 
treatment of poultry diseases in chickens, to mas-
sage broken bones, used as incense, thickening agent, 
and protection of a person from evil eyes (Sisay et  al. 
2013; Tigist et al. 2019; Eshetu et al. 2020). In addition, 
A. debrana leaf mesophyll is used in a thickening agent 

(Sisay et al. 2013) and for treating sisal fiber for packing 
Ethiopian export coffee (e.g. www. gseve ntiplc. com).

Species occurrences data
The occurrences data for both species were obtained 
from the global databases such as Global Biodiversity 
Information Facility (www. gbif. org), IUCN (www. iucn. 
org); herbarium sheets of the National Herbarium at 
Addis Ababa University, Ethiopia; and field survey 
using global positioning system (GPS) that were con-
ducted between November 2021 and June 2022. The 
recorded occurrences data were entered into Microsoft 
Excel and saved in comma-separated value format. A 
total of 76 and 665 georeferenced presence points for 
A. ankoberensis and A. debrana species, respectively 
were collected along the transect lines with a system-
atic sampling techniques targeted the two species. All 
points were mapped using ArcGIS for visual obser-
vation and to check spatial accuracy. To reduce spa-
tial autocorrelation and to achieve good performance 
results, duplicated occurrence points at a distance of 
1 km between each point were removed using “spthin” 
package (Dagnew et  al. 2022). Finally, after removing 
the duplicated occurrence points 36 presence points of 
A. ankoberensis and 397 presence points of A. debrana, 
were selected to build the model. In addition, 1000 false 
absence points were generated for both species using 
random sampling to perform more reliable SDMs (Xu 
et al. 2021).

Fig. 2 A. ankoberensis (a) and A. debrana (b) growth form in their natural habitats

http://www.gseventiplc.com
http://www.gbif.org
http://www.iucn.org
http://www.iucn.org
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Environmental variables
A total of 23 environmental variables with 19 bioclimatic 
and 4 non-climatic variables were used in this study to 
understand their distribution under different climate 
change scenarios (Additional file  1). The present and 
future bioclimatic variables for the year 2050s and 2070s 
as well as elevation data were obtained from Worldclim 
database (www. world clim. org) version 2.1 with 30  arc 
second spatial resolution (Fick and Hijmans 2017). The 
slope data were derived from elevation data. The cur-
rent and future scenario prediction LULCC data were 
obtained from geographical simulation and optimiza-
tion system (GeoSOS) global database (http:// geosi mulat 
ion. cn/ Globa lLUCC produ ct. html), and human popula-
tion density data were obtained from global downscaled 
population projection grids (https:// sedac. ciesin. colum 
bia. edu/ data/ sets/ browse) at a resolution of 30  arc sec-
ond (accessed on 9th July 2022). For future prediction, 
the second-generation Euro-Mediterranean Centre on 
Climate Change Earth System Model (CMCC-ESM2) 
from the CMIP6 general circulation models (GCMs) was 
selected for the year 2050 (2041–2060) and 2070 (2061–
2080). This climate projection model has been widely 
applied in SDMs, and provide a good performance for 
Ethiopian environment (Dagnew et al. 2022). In addition, 
CMCC-ESM2 shows an equilibrium climate sensitiv-
ity of 3.57 °C and a transient climate response of 1.97 °C 
(Lovato et  al. 2022). In this study, three shared socio-
economic pathways (SSP) namely low emission (SSP2.6), 
intermediate (SSP4.5), and high emission scenarios 
(SSP8.5) were used. SSP2.6 scenario is the most aggres-
sive among all SSP in terms of GHG emissions reduc-
tions; SSP4.5 scenario is GHG emissions are roughly 
similar to the current emission and global average tem-
perature tends to decrease with human intervention; and 
SSP8.5 is the worst-case emission scenario in that entails 
GHG emissions are roughly double from current and 
global temperature tends to increase (Meinshausen et al. 
2020). All environmental variables were kept in raster 
format (geotiff) with similar cell sizes and reference sys-
tems to be appropriate for SDMs.

Selection of environmental variables
Important environmental variables were selected for this 
study depending on three criteria such as statistically 
important in predicting presence data for the selected 
species, biologically relevant for survival of selected spe-
cies, and no collinearity with other variables (Abdulbasit 
and Sintayehu 2021). To do this, first Spearman correla-
tion analysis was used to group environmental variables 
that have a correlation coefficient < 0.8 and biologically 
relevant for survival of selected species. Second, vari-
ance inflation factors (VIF) test was used to distinguish 

multi-collinearity among environmental variables. A 
stepwise procedure used to remove environmental vari-
ables with Variance Inflation Factor (VIF) larger than 3. 
Out of these 23 environmental variables, 10 non-corre-
lated environmental variables such as bio2, bio3, bio4, 
bio7, bio14, bio18, bio19, landcover, population, and 
slope were selected based on the spearman correlation 
test and VIF test (Additional file 2). In addition, biologi-
cally important variables such as bio12 and elevation 
were used to map the distribution of both Aloe species. 
The relative variable importance of environmental vari-
ables was assessed by running the “getVarimp” function 
in R software based on correlation-based and area under 
curve (AUC)-based metrics (Naimi and Araújo 2016).

Species distribution modeling
Many algorithms were used to predict species distribu-
tion and their projection, which were classified into three 
main groups such as profile methods, classical regres-
sion and machine learning algorithms (Fick and Hijmans 
2017). For this study two regression algorithms: Gener-
alized Linear Models (GLM) and Multivariate Adaptive 
Regression Splines (MARS), and four machine learning 
algorithms: Boosted Regression Trees (BRT), Maximum 
Entropy model (Maxent), Random Forests (RF), and 
Support Vector Machines (SVM) were used (Dagnew 
et  al. 2022; Xu et  al. 2021). These six model algorithms 
are among the most commonly employed for species 
distribution modeling, depend on the level of complex-
ity, appropriateness, predictive power, and capability to 
incorporate presence-only data because of limited access 
to absence data (West et al. 2016; Nurhussen et al. 2021). 
The details of the models are described in (Table  1). 
These algorithms combined into one ensemble models 
through the ‘sdm’ package (Naimi and Araújo 2016), by 
applying a weighted mean approach using true skill sta-
tistic (TSS) (Hu et al. 2015).

Model validation and mapping
The species occurrences data were divided into two sets 
such as a random set of 70% for training data and 30% 
for evaluating model accuracy (Sintayehu et  al. 2021). 
Bootstrapping replication approach with ten times rep-
lication was used using statistical software R version 
4.2.2 with packages sdm (Venables and Smith 2022). 
The performance of the model was assessed based on 
threshold-independent AUC, threshold-dependent true 
skill statistics (TSS), sensitivity and specificity. The AUC 
value range indicates that 0.5–0.7 is weak, 0.7–0.9 good, 
and greater than 0.9 excellent model performance (Sin-
tayehu et  al. 2021). TSS values indicate that less than 
0.4 is weak, 0.4–0.75 is good, and greater than 0.75 is an 
excellent model performance (Sintayehu et al. 2020a, b, c; 

http://www.worldclim.org
http://geosimulation.cn/GlobalLUCCproduct.html
http://geosimulation.cn/GlobalLUCCproduct.html
https://sedac.ciesin.columbia.edu/data/sets/browse
https://sedac.ciesin.columbia.edu/data/sets/browse
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Sintayehu et al. 2021). To select best threshold, maximum 
sensitivity plus specificity threshold were used from the 
model. The areas of suitability changes for the current 
and future prediction (2050 and 2070, which are the cur-
rent projections global standards) were analyzed under 
four suitability categories using ArcGIS. These categories 
include 0.0–0.25 as not suitable, 0.25–0.50 as lowly suit-
able, 0.50–0.75 moderately suitable, and from 0.75–1.00 
highly suitable (Hamid et  al. 2018). Change in the per-
centage of area (percentage lost or gain areas) by the 2050 
and 2070 were calculated according to Duan et al. (2016) 
formula as described below:

where AC = Percentage of area change; Af = the predicted 
area of suitable habitat for future and Ac = the predicted 
area of suitable habitat under current conditions. The 
overall modeling methods used in this study are pre-
sented in Fig. 3.

Results
Performance of species distribution models
The ensemble model exhibited excellent performance 
for A. ankoberensis, achieving a score of AUC value of 
0.96 and a score of TSS value of 0.88. For A. debrana, 
the model’s performance was good, with a score of AUC 
value of 0.87 and a score of TSS value of 0.63. The perfor-
mances of SDMs using different evaluation criteria were 
illustrated for both Aloe species based on the provided 
training and testing data sets (Table 2). At the individual 

AC =

Af − Ac

Ac
× 100%

level, Maxent achieved the highest scores for Aloe anko-
berensis, while Random Forest (RF) attained the high-
est score for Aloe debrana. Additionally, MARS had the 
lowest score for A. ankoberensis while GLM had the 
lowest score for A. debrana. In general, machine learn-
ing algorithms performed better than classic regression 
algorithms for both species. Moreover, sensitivity and 
specificity scores for both species were high for all mod-
els, indicating precise delineation of both suitable and 
unsuitable areas, with maximum correctly classified sam-
ples (Table 2).

Relative contribution of environmental variables
The key environmental variables crucial for predict-
ing the potential distribution of A. ankoberensis and A. 
debrana species were outlined. For A. ankoberensis, bio2 
exhibited the highest percentage contribution (53.6%), 
while for A. debrana, elevation had the higher percent-
age contribution (44.4%). Among the environmental 
variables used, bio2, bio3, bio7, bio12, and elevation were 
ranked as the top five important variables predicting the 
potential distribution of both species. On the other hand, 
landcover and population for A. ankoberensis, and bio19 
and landcover change for A. debrana were found to have 
lower influence on their distribution (Fig. 4).

The response curve showed that A. ankoberensis pre-
fers the mean diurnal range of temperature ranges from 
14.5 to 15.5 °C, annual precipitation ranges from 1000 to 
1200  mm, temperature annual range ranges from 15 to 
19 °C, elevation ranges from 3000 to 3500 m and isother-
mality ranges from 60 to 73 °C (Fig. 5).

Table 1 SDMs used for our modeling and their description

Models Descriptions

Boosted Regression Trees (BRT) Works based on a combination of a relatively small number of trees to increase the performance 
of predictive variables (Elith et al. 2009), has the ability to process several predictors at high predictive 
accuracy (Gu et al. 2019), constructs the models using stochastic gradient boosting (Friedman 2002)

Generalized Linear Model (GLM) Is a modern regularization method often performing well (Reineking 2006), uses parametric func-
tions such as linear or higher-degree polynomials to model the relationship between the response 
and predictors, is a generalization of ordinary least squares regression (Guisan et al. 2002)

Multivariate Adaptive Regression Splines (MARS) a flexible nonparametric regression model by using piecewise linear basis functions (Elith and Leath-
wick 2007), combines the species data and uses information on the presence of the species to sup-
plement information for the modeled species, considers interactions between variables locally, 
and selects predictors using the signal from the species presence data automatically (Choe et al. 
2018)

Maximum entropy modeling (MaxEnt) Performs better with small sample sizes compared with other modeling methods (Perkins and Frey 
2022), developed for modeling presence-only species data (Phillips et al. 2006), flexible to fit complex 
models depending on number of occurrence points and user-defined settings (Elith et al. 2011)

Random Forest (RF) popular method for SDMs, effective method for predicting species occurrence data (Abdi 2020), 
not very sensitive to tuning the model parameters (Freeman et al. 2016), avoids over fitting by ran-
domly selecting variables to create a large number of classification trees (Jin et al. 2016)

Support Vector Machine (SVM) a non-parametric machine-learning technique for regression and classification problems (Ashraf et al. 
2017), works by defining linear hyperplanes that best separate different classes in the data (Stecanella 
2017), uses nonlinear forms of the predictor variables for increased flexibility (Hastie et al. 2009)
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A. debrana prefers elevation ranges from 2000 to 2900 
m, annual precipitation from 800 to 1100  mm, mean 
diurnal range of temperature ranges from 14 to 17  °C, 
isothermality ranges from 60 to 75  °C, and temperature 
annual range from 18 to 20 °C (Fig. 6).

Current distribution of A. ankoberensis and A. debrana
The current area distribution prediction indicated that 
98.32% of the North Shewa zone was unsuitable for Aloe 

ankoberensis, leaving only 1.68% classified as suitable 
area (Table 2). Within the total suitable area for A. ankob-
erensis, the model indicated that 1.01%, 0.52%, and 0.15% 
were categorized as low, moderate, and high suitability, 
respectively. For Aloe debrana, the prediction of current 
area distribution indicated that 63.89% was unsuitable, 
while 36.11% was classified as suitable area (Table 3).

Furthermore, results showed that 0.21% and 12.54% 
of the study areas were highly and moderately suitable 

Fig. 3 Schematic representation of modeling procedures
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areas for A. debrana, respectively. Correspondingly, the 
highly and moderately suitable areas for A. ankoberen-
sis lie within Ankober, Asagrt, and Tarma Ber districts 
(Fig. 7). Highly suitable areas for A. debrana were mainly 
found in Menz Gera Midir. In addition, the vast majority 
of moderately suitable areas for A. debrana were found 
in Basona Worena, Menz Gera Midir, Menz Mama Midir, 
and Mojan Wedera Woredas (Fig. 7).

Future distribution of A. ankoberensis and A. debrana
The future scenario prediction indicated that A. ankober-
ensis will be completely loss its current highly and mod-
erately suitable habitat or niche in the mid of twenty-first 
century and end of 2070s under all scenarios except SSP 
4.5 scenario by 2050s for moderately suitable habitat 
(Table 3).

The maximum lowly suitable areas found in 2050s and 
2070s were 4.45% and 2.14%, respectively. Moreover, the 

lowly suitable areas will be increased under all scenarios 
by 2050s, and SSP 4.5 and SSP 8.5 scenarios by 2070s 
compared with the current distribution. But lowly suit-
able area will be decreased under SSP 4.5 scenario by 
2070s. According to the model prediction, lowly suitable 
areas for A. ankoberensis lie within Antsokiya, Eferatana 
Gidem, Kewet, Ankober, Angolela Tera, Assagirt and 
Hagere Mariam districts (locally called woreda) by 2050s 
under SSP 2.6 scenario. But, in 2050s and 2070s under 
SSP 4.5 and SSP 8.5 scenarios, the expansion of the lowly 
suitable area to Antsokiaya, Eferatna Gidem and Hareger 
Mariam woredas will be predicted to be lost (Fig. 8).

Similarly, A. debrana will be completely loss its highly 
suitable habitat or niche in the mid of twenty-first cen-
tury and end of 2070s under all scenarios. The moder-
ately suitable area will be 0, 0.68% and 1.89% by 2050, 
and continuously decrease by 2070 under SSP (2.6, 4.5 
and 8.5) scenarios, respectively. The maximum lowly 

Table 2 Performance evaluation of each SDM using different statistical parameters

Species Evaluation criteria SDMs

BRT GLM MARS Maxent RF SVM Ensemble

A. ankoberensis AUC 0.96 0.97 0.90 0.99 0.97 0.96 0.96

TSS 0.88 0.89 0.80 0.94 0.91 0.88 0.88

Sensitivity 0.94 0.96 0.82 0.99 0.95 0.91 0.93

Specificity 0.94 0.93 0.98 0.95 0.96 0.97 0.95

A. debrana AUC 0.87 0.81 0.86 0.87 0.95 0.86 0.87

TSS 0.60 0.52 0.62 0.63 0.79 0.62 0.63

Sensitivity 0.89 0.93 0.88 0.89 0.91 0.89 0.90

Specificity 0.72 0.59 0.74 0.74 0.88 0.72 0.73

Fig. 4 Relative contribution of environmental variables for ensemble SDMs
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suitable areas found in 2050s and 2070s will be 31.36% 
and 26.21%, respectively. Moreover, the lowly suitable 
areas will be expected to decrease under SSP 2.6 and 
4.5 scenarios by 2050, and SSP 4.5 and 8.5 scenarios by 
2070 compared with the current distribution. According 
to the model prediction, moderately suitable areas for A. 
debrana lie within Mimo Werremo, Merhabete, Moretna 
Jiru, Ensaro, and Siya Debrirna Wayu Woredas (Fig.  9). 
Similarly, lowly suitable area for this species could expand 
across most parts of the North Shewa zone.

Habitat change analysis in the distribution of A. 
ankoberensis and A. debrana
In the case of A. ankoberensis, the highly and moderately 
suitable habitats will be expected to decrease by 100% 
under SSP 2.6 and SSP 8.5 scenarios, and 98.67% under 
SSP 4.5 scenario compared to the current distribution. 
The lowly suitable habitat increased by 343.07% under 
SSP 2.6 scenario and show decreasing trend for the rest 
scenarios in 2050s. But, by 2070s, the predicted lowly 
suitable habitats will be expected to decrease under SSP 
2.6 and SSP 4.5 scenarios as compared to predicted lowly 
suitable habitats of the year 2050s. In addition, by 2070s 
the non-suitable habitat will be expected to increase by 
1.3% while the lowly suitable habitat will decrease by 

59%, moderately and highly suitable habitats by 100% 
under SSP 4.5 scenario. In the case of A. debrana, com-
pared to the current distribution, the highly suitable 
habitat will be lost by 100% under all scenarios in 2050s 
and 2070s. The area covered by moderately suitable habi-
tat decreased by 100%, 94.63%, and 84.95% under SSP 
scenarios  (2.6, 4.5, and 8.5), respectively by 2050s, and 
show decreasing trend under all scenarios by 2070s. The 
lowly suitable habitat for this species will be expected 
to decrease by 72.45% and 12.67% under SSP 2.6 and 
4.5 scenarios respectively by 2050s, while decreased by 
12.2%, 29.66% and 28.6% under SSP 2.6, 4.5 and 8.5 sce-
narios respectively by 2070s (Table 4). In addition, under 
all scenarios the non-suitable habitats will be expected to 
increase as compared to the current distribution.

Discussion
Data quality and model performance
The current and future distribution of A. ankoberensis 
and A. debrana under different climate change scenar-
ios was done for the first time in this study. This predic-
tion helps in understanding how these endemic species 
of Aloe will respond to future climate conditions. The 
SDMs are the most important methods for predict-
ing the potential distribution of species by producing 

Fig. 5 Response curve for A. ankoberensis distribution. The X-axis represents the range of values of the environmental variables, and the Y-axis gives 
the probability of occurrence on a scale from 0 to 1
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Fig. 6 Response curve for A. debrana distribution. The X-axis represents the range of values of the environmental variables, and the Y-axis gives 
the probability of occurrence on a scale from 0 to 1

Table 3 Predicted suitable area per species for current and future climate change scenarios

Species Decades Scenarios Total suitable area  (km2) and percent of land

Not suitable Lowly suitable Moderately suitable Highly suitable

km2 % km2 % km2 % km2 %

A. ankoberensis Current – 15,901.43 98.32 162.57 1.01 83.74 0.52 24.59 0.15

2050 SSP2.6 15,452.03 95.55 720.31 4.45 0 0 0 0

SSP4.5 15,790.88 97.64 380.34 2.35 1.12 0.01 0 0

SSP8.5 15,874.09 98.16 298.25 1.84 0 0 0 0

2070 SSP2.6 15,884.46 98.22 287.88 1.78 0 0 0 0

SSP4.5 16,105.68 99.59 66.66 0.41 0 0 0 0

SSP8.5 15,825.57 97.86 346.77 2.14 0 0 0 0

A. debrana Current - 1033.69 63.89 3777.02 23.35 2028.79 12.54 33.84 0.21

2050 SSP2.6 15,131.92 93.57 1040.42 6.43 0 0 0 0

SSP4.5 12,765.09 78.93 3298.29 20.39 108.97 0.68 0 0

SSP8.5 10,794.9 66.75 5072.19 31.36 305.24 1.89 0 0

2070 SSP2.6 11,882.93 73.48 4239.14 26.21 50.27 0.31 0 0

SSP4.5 13,515.11 83.57 2656.66 16.43 0.58 0.004 0 0

SSP8.5 13,475.54 83.32 2696.8 16.68 0 0 0 0
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habitat suitability maps and developing priority site for 
conservation (Elith and Leathwick 2007; Kaky and Gil-
bert 2017; Borzée et  al. 2019). Moreover, the SDMs are 
gaining recognition as a tool for sustainable biodiversity 
management (Qazi et al. 2022). The model achieved with 
an excellent degree of accuracy for A. ankoberensis with 
an AUC/TSS score of 0.96/0.88 respectively, and a good 
degree of accuracy for A. debrana with AUC/TSS score of 
0.87/0.63 respectively. Congruently, Dagnew et al. (2022) 
found an AUC/TSS score of 1/0.96 for highland bam-
boo, and Mkala et al. (2022) found an AUC/TSS score of 
0.91/0.82 for Aloe clasenii and 0.83/0.64 for Aloe ballyi. 
Moreover, numerous studies showed that performance 
of RF was higher for predicting species distribution in 
ensemble model approach (Lee et  al. 2021; Nurhussen 
et  al. 2021; Xu et  al. 2021; Urziceanu et  al. 2022). This 
model result also revealed that RF has the highest per-
formance with AUC/TSS score of 0.97/0.91 and 0.95/0.79 
for A. ankoberensis and A. debrana, respectively.

In addition, to determine level of threats for the spe-
cies categorized under Red List, the IUCN started using 
SDMs (Cassini 2011). Previous studies revealed that 
the use of largest set of environmental variables will 
increase the possibility of finding important variables 

for prediction (Lissovsky et al. 2021). Accordingly, in this 
study variety of environmental variables were added to 
improve the accuracy of the model. To get truthful pre-
diction, preparing quality data is a key point. This can 
be performed by removing auto-correlated occurrence 
records, correlation test, and reasonable selection of 
environmental variables (Pattanaik et al. 2022; Tesfamar-
iam et al. 2022).

Current distribution and key environmental variables for A. 
ankoberensis and A. debrana
Species distributions are limited by availability of habi-
tat (Wang et  al. 2015). To improve the management 
and conservation of a species, it is vital to look at its 
potential range given the current climatic conditions. 
Climate change is the significant factor that affects the 
distribution of global plants (Tshabalala et  al. 2020). 
According to our results, for A. ankoberensis, suit-
able habitat is currently concentrated in the Ankober, 
Tarmaber, and Asagrt woredas while for A. debrana, 
it is found mostly in the North Shewa zone showing 
decreasing and narrowing patterns of habitat ranges 
compared to historical distribution records of previous 
studies (Sebsebe and Nordal 2010; Eshetu et  al. 2020). 

Fig. 7 Current predicted habitat suitability of A. ankoberensis and A. debrana 
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According to Mkala et al. (2022), climate change could 
have a substantial impact on endemic species in the 
present and the future, displacing them from their orig-
inal niche ranges to new ones (Qin et  al. 2017). These 
findings showed that climate change could have a sig-
nificant impact on the distribution of A. ankoberensis 

and A. debrana. Identifying the environmental vari-
ables that have a significant effect on species distribu-
tion is a key for conservation and restoration of species 
in their natural habotats (Cao et  al. 2016). With this 
regard this study showed that temperature and precipi-
tation related environmental variables were the most 

Fig. 8 Future predicted habitat suitability of A. ankoberensis under different scenarios
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significant factors for Aloe species distribution (Abdul-
basit and Sintayehu 2021; Guo et al. 2021).

In addition, elevation is also the most significant 
factor for distribution of species (Cotrina et  al. 2021; 
Yericho et  al. 2022). Similar studies also showed that 
climate change could have affected species growth 
and distribution, particularly along elevation gradi-
ents (Odeny et al. 2019). Similarly, A. ankoberensis was 
greatly affected by mean diurnal range of tempera-
ture and annual precipitation, while A. debrana was 
affected by elevation and annual precipitation. Previ-
ous studies by Wilson et  al. (2020) reported that pre-
cipitation, temperature, water availability, humidity, 
and wind are significantly limiting species distribution 
in Africa. Despite the fact that both species are more 
sensitive to variations in temperature and precipita-
tion, their tolerance to these variables may not be the 
same as a result of difference in elevations in the natu-
ral habitats. According to the findings from this study, 
A. ankoberensis prefers areas with an elevation range of 
3000–3500 m above sea level while A. debrana prefers 
areas with an elevation range of 2000–2900 m  above 
sea level. This is in consistence with previous stud-
ies on Aloe species distribution in Ethiopia (Sebsebe 
and Nordal 2010). In Ethiopia, though the correlation 
of rainfall with altitude above about 1800  m is par-
ticularly poor due to oreographic effects, metrological 
data indicated that the range of A. debrana areas gets 

more precipitation than the sub-Afroalpine ecosystem 
of A. ankoberensis, which favores more population dis-
tribution and able to withstand the impact of climate 
change. However, A. ankoberensis could be less toler-
ant to an increased temperature at higher elevation of 
sub-Afroalpine ecosystem so that affected the popula-
tion distribution coupled with other factors. Different 
scholars identified that anthropogenic activities such 
as urban development programs, excessive logging, 
mining, conversion of forest areas to farmland, over 
exploitation and others combined with climate change 
influence species distribution (Weelden et  al. 2021; 
Zahoor et  al. 2021). Moreover, these anthropogenic 
factors are one of the factors for global warming in the 
atmosphere which results in diminishing of biodiversity 
and affects survival of species in their natural habitats. 
Sintayehu (2018) showed that extreme climate warm-
ing’s could alter plant growth, as well as increasing 
their vulnerability within natural habitat. Additionally, 
other biological factors that affect local adaptations, 
such as physiological features and phenotypic plastic-
ity, may have a larger impact on species’ reactions to 
climate change than temperature changes alone (Urban 
et  al 2016). As a result, significant level of the natural 
habitats for these Aloe species are currently vulner-
able to further habitat loss and fragmentation, in addi-
tion to climate change impacts. It has been stated that 
the main risks to the wild population instability of Aloe 

Fig. 8 continued
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species in the environment are habitat loss brought on 
by agriculture, infrastructure growth, and an increase 
in settlement rates (Eshetu et  al. 2020). In addition, 
growth of human population, land use and  land cover 
change and development of tourist industry affect spe-
cies diversity and distribution pattern (Nugroho et  al. 
2022). These phenomena in the study areas aggravated 

decline Aloe species population distribution coupled 
with the climate change.

Future distribution of A. ankoberensis and A. debrana
Climate change predictions suggest that the ranges of 
these endemic Aloe species will gradually shrink, leading 
to a reduction in their suitable habitats. Climate change 

Fig. 9 Future predicted habitat suitability of A. debrana under different scenarios
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has already initiated significant large-scale alterations 
in species distribution, abundance, and genetic diver-
sity (Weiskopf et  al. 2020). It is clear that species’ geo-
graphic distributions may be altered in the future due 
to climate change (Sales et  al. 2020). Previous research 
demonstrated that some species may experience benefit 
from climate change, gaining access to more areas that 
are optimal for growth and reproduction (Sintayehu et al. 
2021; Sintayehu et al. 2020a, b, c). However, other species 
suffer from the negative consequences of climate change 

(Kaky 2020; Abdulbasit and Sintayehu 2021; Lee et  al. 
2021; Xu et al. 2021). Endemic species are more affected 
by climate change than non-endemic species (Manes 
et  al. 2021). This indicates that areas that have high 
endemic species are more vulnerable to climate change.

According to most predicting models, the tempera-
ture in Ethiopia will increase significantly in the future, 
and its precipitation will also slightly increase. The 
model predicts that in both the 2050s and 2070s, the 
highly suitable area for both species will decrease by 

Fig. 9 continued

Table 4 Percentage of area changes (gain or loss) of A. ankoberensis and A. debrana for future periods (2050 and 2070) under SSP (2.6, 
4.5 and 8.5) scenarios

Species Decades Scenarios Change (%) compared with current suitability

Not suitable Lowly suitable Moderately 
suitable

High suitable

A. ankoberensis 2050 SSP2.6 − 2.83 343.07 − 100 − 100

SSP4.5 − 0.70 133.95 − 98.67 − 100

SSP8.5 − 0.17 83.45 − 100 − 100

2070 SSP2.6 − 0.11 77.08 − 100 − 100

SSP4.5 1.30 − 59.00 − 100 − 100

SSP8.5 − 0.48 113.30 − 100 − 100

A. debrana 2050 SSP2.6 46.45 − 72.45 − 100 − 100

SSP4.5 23.54 − 12.67 − 94.63 − 100

SSP8.5 4.47 34.30 − 84.95 − 100

2070 SSP2.6 15.00 − 12.20 − 97.52 − 100

SSP4.5 30.80 − 29.66 − 99.97 − 100

SSP8.5 30.40 − 28.60 − 100 − 100
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100% under all scenarios. Similar to this, in the 2050s, 
the moderately suitable region for A. ankoberensis will 
shrink by 100% under all scenarios other than SSP 4.5. 
According to SSP scenarios (2.6, 4.5, and 8.5), the mod-
erately suitable area for A. debrana will drop by 100%, 
94.63%, and 84.95% in the 2050s and by 97.52%, 99.97%, 
and 100% in the 2070s, respectively. This is likely due 
to a decline in area available and its suitability as global 
temperature increase. Similarly in the future climate 
change could have negative impact by reducing the 
geographical range of species (Jamwal et  al. 2021). 
Given the possible effects of climate change and habi-
tat fragmentation on unstable and isolated populations, 
the long-term viability of threatened and endangered 
plant species is becoming increasingly crucial (Wang 
et  al. 2015). This cumulative impact of all climate 
extreme events will accelerate the total alteration of 
the ecosystem and its structure. For different reason, 
the conservation and expansion of these endemic spe-
cies habitat need to pay attention. First, they have been 
recognized for their economic potential in Ethiopia 
particularly for livelihood security, economic devel-
opment and enhancing biodiversity conservation on 
marginal lands (Mukonyi et al. 2007). Second, they are 
considered as a keystone species that alters ecosystem 
(Sebsebe and Nordal 2010). Third, they have potential 
values for medicinal, social, environmental, materials, 
and food use (Anteneh et al. 2020; Eshetu et al. 2020). 
Fourth, these endemic species are  found in restricted 
range, peculiar features of the limited number of Aloe 
species on the Afromontane and sub-Afroalpine eco-
systems, and their habitats are susceptible to habitat 
fragmentation.

The model predicted that annual precipitation 
increases from 1000–1200  mm for A. ankoberensis and 
from 800 to 1100 mm for A. debrana that could result in 
challenges on the suitable habitats of the species. How-
ever, the future precipitation prediction in Ethiopia indi-
cated an erratic rainfall pattern (IPCC 2021). This erratic 
rainfall can cause imbalances in the soil moisture, vegeta-
tion, and microclimate of the environment (Bates et  al. 
2008) and extreme rainfall can accelerate soil erosion. 
Furthermore, the incidence of disease outbreaks accumu-
lated each year due to climate change (Jeon et al. 2020). 
These factors could pose significant threats to the survival 
of both A. ankoberensis and A. debrana. Consequently, 
the future suitable area for both A. ankoberensis and A. 
debrana would become lost. In addition, the prediction 
showed that A. ankoberensis and A. debrana will change 
their distribution in response to future climatic changes. 
Because of the rise in global average temperature, the 
species could shift to high-elevation areas (Faticov et al. 

2021). The current and future challenges posed on these 
endemic species could be an indicator for the great chal-
lenge faced on the peculiar habitats like sub-Afroalpine 
and Afroalpine ecosystems of the country.

Conclusion
This study investigated the potential distribution and 
environmental niche of A. ankoberensis and A. debrana 
in the North Shewa zone, employing an ensemble model 
approach across current, 2050s, and 2070s time periods 
under three climate scenarios SSP (2.6, 4.5, and 8.5). Such 
investigation is vital for future monitoring activities and 
proper design of conservation strategies and manage-
ment plans of endemic and rare species that become 
under threat due to climate and land use and  land 
cover changes. The findings underscored that the suit-
able habitat for the narrowly endemic A. ankoberensis 
and endemic A. debrana is projected to diminish under 
future climate change scenarios, potentially exacerbating 
their conservation status beyond the categories listed in 
IUCN reports. The limited number of presence points for 
A. ankoberensis suggest a significant decline in the popu-
lation of this sub-Afroalpine and narrowly endemic Aloe 
species. Furthermore, the existing and forthcoming chal-
lenges confronting these endemic species serve as indica-
tors of the substantial threats faced by peculiar habitats 
such as sub-Afroalpine and Afroalpine ecosystems in 
the country. In summary, the findings suggest an urgent 
call for developing species conservation plans, designing 
appropriate conservation strategies, and strengthening 
adaptation measures to tackle the compounded factors 
contributing to habitat loss. These efforts are vital to 
ensure the survival of these endemic, narrowly endemic, 
and rare species within their natural habitats.
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