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Abstract 

Background  Soil organic carbon (SOC) is a critical component of the global carbon cycle, and an accurate esti-
mate of regional SOC stock (SOCS) would significantly improve our understanding of SOC sequestration and cycles. 
Zoige Plateau, locating in the northeastern Qinghai-Tibet Plateau, has the largest alpine marsh wetland worldwide 
and exhibits a high sensitivity to climate fluctuations. Despite an increasing use of optical remote sensing in predict-
ing regional SOCS, optical remote sensing has obvious limitations in the Zoige Plateau due to highly cloudy weather, 
and knowledge of on the spatial patterns of SOCS is limited. Therefore, in the current study, the spatial distributions 
of SOCS within 100 cm were predicted using an XGBoost model—a machine learning approach, by integrating Senti-
nel-1, Sentinel-2 and field observations in the Zoige Plateau.

Results  The results showed that SOC content exhibited vertical distribution patterns within 100 cm, with the high-
est SOC content in topsoil. The tenfold cross-validation approach showed that XGBoost model satisfactorily predicted 
the spatial patterns of SOCS with a model efficiency of 0.59 and a root mean standard error of 95.2 Mg ha−1. Pre-
dicted SOCS showed a distinct spatial heterogeneity in the Zoige Plateau, with an average of 355.7 ± 123.1 Mg ha−1 
within 100 cm and totaled 0.27 × 109 Mg carbon.

Conclusions  High SOC content in topsoil highlights the high risks of significant carbon loss from topsoil due 
to human activities in the Zoige Plateau. Combining Sentinel-1 and Sentinel-2 satisfactorily predicted SOCS using 
the XGBoost model, which demonstrates the importance of selecting modeling approaches and satellite images 
to improve efficiency in predicting SOCS distribution at a fine spatial resolution of 10 m. Furthermore, the study 
emphasizes the potential of radar (Sentinel-1) in developing SOCS mapping, with the newly developed fine-reso-
lution mapping having important applications in land management, ecological restoration, and protection efforts 
in the Zoige Plateau.
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Introduction
Soil organic carbon (SOC), which is approximately 2 to 
2.5 times higher than the carbon stocks of other bio-
sphere compartments (atmosphere and vegetation) 
within the 1  m depth range (Lal 2004), represents the 
largest carbon reservoir of about 1500 Pg C (1 Pg = 1015 g) 
in terrestrial ecosystems globally (Jin et  al. 2017). Thus, 
even minor changes in SOC reservoirs and emissions can 
significantly impact atmospheric CO2 concentrations, 
positively feedbacking global climate change. Human-
induced extreme climate events disrupt the equilibrium 
of SOC exchange between the atmosphere and soil, mak-
ing SOC a significant source of excess atmospheric CO2 
emissions (Dash et  al. 2019). Although a large number 
of studies predict SOC distribution at site, regional and 
global scales (Hengl et  al. 2017; Tang et  al. 2017), large 
variabilities still exist in amount and distribution due to 
different modeling approaches, data sources and spa-
tial resolutions. Global estimates of SOC have greatly 
advanced our understanding of the amount, distribu-
tion and driving mechanisms at a global scale; however, 
low spatial resolution (> 250 m) of global SOC have con-
strained their use in small scales that require fine spatial 
resolution of SOC (< 10 m). Therefore, the development 
of rapid, non-destructive, and cost-effective detection 
methods in predicting SOC is crucial for implementing 
effective soil management measures and optimizing soil 
utilization to maintain healthy soil ecosystems (Marchant 
et al. 2015; Six and Paustian 2014).

Remote sensing technology is an effective approach 
to study the spatial patterns of SOC stock (SOCS) while 
reducing cost of field sampling and laboratory analysis 
(Zhou et al. 2023a). Remote sensing-based SOCS is com-
monly predicted based on the quantitative relationship 
between field SOCS observations and vegetation indices 
(Zhou et  al. 2020), or spectral bands to understand the 
spatial patterns of SOCS (Zhou et  al. 2021). Increasing 
availability of satellite sensors, e.g., multispectral and 
radar, has enriched land surface information for SOCS 
prediction, and have been validated for mapping SOCS 
in different ecosystems (Castaldi et  al. 2019b; Gholi-
zadeh et  al. 2018a; Zhou et  al. 2021). The majority of 
studies have relied on optical satellite sensors, and the 
commonly derived variables included surface reflectance 
and vegetation indices (Cao and Ling 2021; Castaldi et al. 
2019b). For example, Castaldi et  al. (2019b) used Senti-
nel-2 predicted SOCS in a cropland, while Geng et  al. 
(2024) applied Landsat 9 to assess the spatial variation 
of SOC in northeast China. However, optical satellites 
(e.g., Sentinel-2 and Landsat images) suffered from cloud 
cover and limited penetration depth, which restricts their 
ability to detect SOC below the soil surface, constraining 
their applications in SOCS prediction. Therefore, relying 

solely on optical sensors might be insufficient for accu-
rately estimating SOC (Tang 2013). On the other hand, 
radar images possess the ability to penetrate clouds and 
can provide imagery all-weather, day-and-night supply of 
imagery of Earth’s surface (Ren et al. 2021). Radar sensors 
(e.g., Sentinel-1) can also obtain valuable information 
concerning the vegetation canopy and soil. Thus, com-
bining optical satellite images and radar data is regarded 
as an innovative approach (Zhou et al. 2020; Zhou et al. 
2023a). Zhou et al. (2020) leveraged data from Sentinel-1 
and Sentinel-2 satellites to assess the potential of various 
machine learning algorithms in predicting SOCS. Their 
findings indicate that, compared to individual sensors, 
a multi-source sensor approach demonstrates greater 
accuracy in SOCS prediction. Therefore, combining Sen-
tinel-1 and 2 images with a spatial resolution of 10  m 
offers a nice probability to predict the spatial patterns of 
SOCS.

In addition to using various remote sensing image 
data, it is also crucial to select appropriate algorithms to 
improve the accuracy of predicting SOCS (Ghatasheh 
et  al. 2022). Commonly used machine learning algo-
rithms include Classification and Regression tree, Ran-
dom Forest, Support Vector Machine, XGBoost (Lei 
2019). For instance, Rentschler et al. (2019) explored the 
potential of Random Forest and Support Vector Machine 
to predict the spatial distribution of SOCS in horizontal 
and vertical soil layers and revealed that the exponen-
tial depth function combined with the Random Forest 
method improved the depiction of the spatial distribution 
of SOCS. Meanwhile, Gebauer et al. (2019) used acceler-
ated regression tree and differential evolution algorithm 
to predict SOCS of the dry forest ecosystem in southwest 
Ecuador and found the beneficial impact of the differen-
tial evolution algorithm on improving the precision of 
predictions. Therefore, the application of multiple remote 
sensing data and machine learning algorithms has large 
potentials to enhance the predictive accuracy of SOCS.

The Zoige Plateau, located in the northeastern part 
of the Qinghai-Tibet Plateau, has the largest alpine 
marsh wetland worldwide, owing to its unique climatic 
and hydrological conditions, as well as its topographic 
and soil characteristics (Ma 2013). These wetlands are 
highly sensitive to climate change and anthropogenic 
disturbances. Since the 1970s, climate change, artifi-
cial drainage, peat extraction and over livestock graz-
ing has reduced wetland areas by more than 30% in the 
Zoige Plateau (Wu et  al. 2011), which may have a sig-
nificant impact on SOCS. Therefore, estimating SOCS 
in the Zoige Plateau has been a long-term focus at both 
site and regional scales. At a site scale, Ye et al. (2023) 
assessed topsoil (0–10  cm) SOC content and SOCS 
changes following different vegetation restoration 
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practices, and Chen et  al. (2014) measured SOC con-
tent and carbon age down to 6 m at seven sites, while 
Cao and Ling (2021) predicted the spatial patterns of 
SOCS within a depth of 0–30  cm using the stepwise 
regression method combined with vegetation indices, 
texture characteristics, and topographic features from 
GF-1 image. Moreover, a recent study estimated the 
spatial patterns of SOCS within 100  cm using kriging 
approach in Zoige and Hongyuan County (Ma et  al. 
2016); however, the relative coarse resolution of 1  km 
and the lack of field validation of kriging models might 
constrain the application to land management at a 
small scale, requiring an urgent SOCS mapping at a fine 
resolution across the Zoige Plateau.

To fill this substantial knowledge gap, we combined 
Sentinel-1 and Sentinel-2 to predict the spatial patterns 
of SOCS using XGBoost, a machine learning approach 
in the Zoige Plateau. The main objectives were to: (1) 
Explore the vertical distribution characteristics of 
SOCS down to 100 cm soil profile; (2) Develop machine 
learning based model for SOCS prediction; (3) Investi-
gate the spatial distributions of SOCS; and (4) Quantify 
total SOCS across the Zoige Plateau.

Materials and methods
Study area
The Zoige Plateau, located in the upper reaches of the Yel-
low River in the northeastern Tibet Plateau, covers an area 
of approximately 12,000 km2 and has an elevation range of 
3400 to 3900 m above sea level (Li et al. 2020). Zoige has 
a plateau cold temperate zone, characterized by sub-cold 
climatic conditions, high precipitation, and humidity lev-
els, with an annual average precipitation of around 600–
800 mm (Jin et al. 2020). The region has an annual average 
temperature of approximately 1 °C, with the coldest month 
in January and the warmest month in July. Zoige experi-
ences a long winter from October to April of the follow-
ing year and a short summer from May to September (Qiu 
et al. 2009). The vegetation types are alpine meadow and 
marsh meadow, dominated by Kobresia kansuensis, Carex 
muliensis, Carex lasiocarpa, Kobresia setchwanensis, Blys-
mus sinocompressus and Elymus nutans, etc.

Field observations
Before conducting field observations, a pre-selection of 
field observational sites was conducted based on grass-
land distributions, vegetation coverages and elevations 

Fig. 1  Location of the study area. The land cover data originated from the European Space Agency’s (ESA) WorldCover 10 m 2020 product (Venter 
et al. 2022). The cartographic reference number GS(2019)1822
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to ensure that our field sites had a broad coverage 
of the whole Zoige Plateau. Finally, a total of 59 sam-
pling plots (Fig. 1) were selected to ensure their repre-
sentativeness and the access across the Zoige Plateau 
in 2019. The general information of vegetation types, 
vegetation coverages and elevations of field sites were 
shown in Table 1. Within each site, a square plot with 
a 1 m × 1 m was set. Soil samples were collected at four 
layers: 0–10, 10–30, 30–50, and 50–100  cm, which 
resulted in 236 soil samples in total. The fresh weight 
of each soil sample was measured using a balance, and 
the samples were placed in labeled bags. The bags were 
then sealed and arranged in sequential order in storage 
baskets for subsequent laboratory analysis involving 
the removal of roots, stones, and debris. Then, the soil 
samples were air-dried and finely grounded through a 
0.15 mm sieve, and SOC content was measured. Intact 
soils were collected using a soil ring knife to determine 
soil bulk density and sand content for each soil sample. 
SOC content was analyzed using the potassium dichro-
mate heating method (Knicker et al. 2007), then, SOCS 
(Mg ha−1) was calculated (Huang et al. 2013):

where BDi is the soil bulk density of layer i (g cm−3); SOCi 
is the SOC content of layer i (g kg−1); Si is sand content of 
layer i (%); Di is the soil thickness of layer i (cm).

The Kruskal–Wallis test was employed to examine 
the significance of the differences in SOC content and 
SOCS distribution across soil depths.

(1)SOCS =

n=k

i=1

BDi × SOCi × Di × (1− Si)× 0.1

Remote sensing data and preprocessing
Sentinel-1 is an all-weather radar imaging system, which 
was developed by the European Commission and the 
European Space Agency for the Copernicus Global Earth 
Observation Project. The Sentinel-1 imaging system 
operates in the C-band and has four imaging modes, pro-
viding technical support for long-term monitoring of a 
given region due to its dual polarization capability, short 
revisit period, and fast product production (Plank 2014). 
In this study, two remote sensing images of Sentinel-1 
IW GRD acquired on September 18, 2019 with a spa-
tial resolution of 10 m were selected. The ESA software 
SNAP was used to preprocess the Sentinel-1 images, 
which included orbit correction, thermal noise removal, 
radiometric calibration, speckle filtering, and terrain cor-
rection. Finally, the VV and VH polarization backscatter 
coefficients were obtained.

Sentinel-2 is a high-resolution multispectral imaging 
satellite that carries a Multispectral Imager (MSI) at a 
height of 786 km with 13 spectral bands. The Sentinel-2 
image data is unique in having three specialized red-edge 
bands, which makes it particularly effective for monitor-
ing vegetation health information. Four remote sensing 
images of Sentinel-2 L2A were selected on September 18, 
2019.

In this study, we selected the VV and VH bands of 
Sentinel-1 radar data and their corresponding 16 tex-
ture indices, as well as B1, B2, B3, B4, B5, B6, B7, B8, 
B8A, B10, B11, and B12 bands of Sentinel-2 data and 
their corresponding 96 texture indices (Table 2) as vari-
ables. In addition, we calculated eight vegetation indices 
resulting in a total of 134 variables. Previous studies have 

Table 1  General characteristics of observational plots

SD, standard deviation

Dominant species

Carex muliensis, 
Caltha scaposa, Juncus 
concinnus

Blysmus sinocom, 
Kobresia capillifolia, 
Chamaesium thalistrif

Kobresia tibetica, 
Kobresia capillifolia, 
Carex ennrvis

Kobresia tibetica, 
Trollius ranunculoides, 
Carex muliensis

Elymus nutans, Deyeuxia 
sylvatlca, Festuca 
chinensis

Elevation (m)

 Maximum 3577 3146 3514 3595 3608

Minimum 3428 3549 3429 3248 3437

Mean 3491 3442 3464 3477 3487

SD 45.47 95 28.2 95.1 50.5

Vegetation cover (%)

Maximum 98 88 86 84 83

Minimum 88 71 77 78 75

Mean 91 85 84 82 81

SD 4 5 3 3 3



Page 5 of 12Lei et al. Ecological Processes           (2024) 13:32 	

suggested that vegetation and texture indices based on 
band reflectivity can help improve the estimation accu-
racy of SOCS (Wang et al. 2019b).

Feature selection
Based on the coordinates of each site, texture and veg-
etation indices were extracted. Before feature selection, 
SOCS within 100 cm was summed of four layers (0–10, 
10–30, 30–50, and 50–100  cm). In order to reduce the 
calculating cost and improve the modeling efficiency, the 
gradient boosting algorithm was used for feature selec-
tion. One advantage of gradient boosting algorithms 
is that they allow for obtaining the importance score of 
each attribute relatively easily after creating the boost-
ing trees. In general, the importance score measures the 
value of a feature in the decision tree construction of the 
model. The more an attribute is used to construct deci-
sion trees in the model, the higher its importance. The 
attribute importance is calculated by computing and 
ranking each attribute in the dataset. In a single decision 
tree, attribute importance is calculated by the quantity 
that improves the performance metric by each attribute 
split point, weighted by the nodes it is responsible for and 
the number of times it is recorded. That is, the greater 
the improvement of the performance metric by an attrib-
ute at a split point (closer to the root node), the greater 
the weight assigned to it, and the more important the 
attribute is as it is selected by more boosting trees. The 
performance metric can be the Gini purity for selecting 
split plots or other scoring functions. Finally, the results 
of each attribute in all boosting trees are weighted and 

summed before being averaged to obtain an importance 
score (Bentéjac et al. 2021; Mayr et al. 2014).

During the feature selection process, the XGBoost 
model parameters were configured as follows: max_
depth = 1, eta = 8/10, silent = 1, objective = ’reg:linear’, 
nround = 150, nthread = 2, verbosity = 0, etc. Optimal 
model parameter selection involved iteratively training 
each parameter value with the optimal seed number, ulti-
mately determining the optimal model parameters. The 
xgb.importance function was then employed to select 
the top 15 most important variables from the depend-
ent variables. Subsequently, utilizing the recursive feature 
elimination principle, the model underwent tenfold cross 
validation training, initially starting with 15 variables 
and iteratively discarding the least important variable in 
each cycle. Finally, the results indicated that the highest 
efficiency was achieved when six variables were involved 
in model training (Demir and Şahin 2022; Zhang et  al. 
2022).

XGBoost model
In this study, we selected the XGBoost model as the core 
algorithm, which was motivated by its effectiveness in 
feature selection. XGBoost initially proposed by Tianqi 
Chen is derived from one of the boosting algorithms and 
its core idea was to combine classification and regres-
sion trees (CART) to form a robust classifier (Chen and 
Guestrin 2016). This was  improved on Gradient Boost-
ing Decision Tree (GBDT), making it more versatile and 
powerful. Within the XGBoost framework, we assessed 
the performance and significance of the initial feature 

Table 2  Calculations of texture and vegetation indices according to Haralick (1979); Rouse Jr et al. (1974)

Pi,j, row i and column j of the gray level co-occurrence matrix; ρ,the corresponding band of S2 (Sentinel-2) image

Texture index Formula Vegetation index Formula

Mean ∑N−1
i,j=0 iPi,j

NDVI ρNIR−ρRED
ρNIR+ρRED

Variance N−1∑
i,j=0

iPi,j(i −Mean)2
EVI ρNIR−ρRED

ρNIR+6.0ρRED−7.5ρBLUE+1
× 2.5

Homogeneity N−1∑
i,j=0

i
Pi,j

1+(i−j)2

RVI ρNIR
ρRED

Contrast N−1∑
i,j=0

iPi,j(i − j)2
DVI ρNIR − ρRED

Dissimilarity ∑N−1
i,j=0 iPi,j |i − j| NGBDI ρGREEN−ρBLUE

ρGREEN+ρBLUE

Entropy N−1∑
i,j=0

iPi,j
(
− ln Pi,j

) MSR ρNIR
ρRED

− 1/
√

ρNIR
ρRED

+ 1

Second moment N−1∑
i,j=0

iP2i,j
MSI ρSWIR/ρNIR

Correlation N−1∑
i,j=0

iPi,j

[
(i−Mean)(j−Mean)

√

VAiVAj

]
VARI ρGREEN−ρRED

ρGREEN+ρRED−ρBLUE
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set by constructing decision trees for regression estima-
tion. This approach facilitated the derivation of impor-
tance scores for feature variables. Moreover, XGBoost 
demonstrated considerable computational acceleration, 
thereby enhancing model efficiency (Zheng et  al. 2017). 
As a result, XGBoost has gained widespread application 
in various fields due to its high accuracy, parallel process-
ing and portability, stability and lack of overfitting (Chen 
et al. 2019).

XGBoost has several parameters, and the following are 
some of the most critical parameters used in this study: 
(1) Gamma—a minimum loss reduction required to make 
a further partition on the tree’s leaf nodes; (2) Min_child_
weight—the sum of minimum leaf node instance weights; 
(3) Max_depth—the maximum depth of a single tree; (4) 
Subsample—the proportion of random samples per tree; 
(5) nrounds—the maximum boosting iterations; and (6) 
Eta—controls the learning rate: when adding the contri-
bution of each tree to the current estimate, scale by a fac-
tor of 0 < eta < 1. The lower the eta value, the higher the 
nrounds value. A lower eta value means that the model is 
more robust to overfitting, but the computation speed is 
slow (Chen et al. 2019).

After the feature selection, the XGBoost model 
was used to predict the spatial distribution of SOCS. 
The XGBoost model was trained using the caret soft-
ware package in R, with defined parameters such as 
method = “cv”, number = 10, savePredictions = ‘final’, etc. 
During the model training, the best model was selected 
automatically by caret, then raster::predict function was 
applied to predict the spatial pattern of SOCS.

Model efficiency
The model accuracy was evaluated based on tenfold 
cross-validation. Its principle was to randomly divide 
the whole dataset into ten nearly equal-sized parts and 
iteratively use nine of them for training and the remain-
ing one for validation. The accuracy of each validation 
dataset was used as the evaluation criterion (Fushiki 
2011). The final validation result was obtained by averag-
ing the outcomes of tenfold cross validation (Singh and 
Panda 2011). The model prediction accuracy is evaluated 
using the root mean square error (RMSE, formula 2) and 
R-squared (R2, formula 2 and 3). The RMSE value reflects 
the relative dispersion between the predicted value and 
the observed value, while R2 indicates the closeness 
between the predicted value and the observed value. The 
R2 value ranges from 0 to 1, and the closer it is to 1, the 
smaller the RMSE value will be.

(2)RMSE =

√
1

n

∑
n

i=1
(Pi − Oi)

2

where n represents the number of samples, Pi and Oi rep-
resent the predicted and observed SOCS, respectively.

Results
Vertical distribution SOC and SOCS
SOC content decreased with increasing soil depth 
(Fig.  2a) and exhibited a clear vertical spatial distri-
bution pattern. Mean SOC content decreased from 
73.2  g  kg−1 for 0–10  cm to 33.9  g  kg−1 for 50–100  cm 
with a weighted average (by depth) of 41.9 g kg−1 within 
100 cm. Kruskal–Wallis test showed that soil depth had 
a significant impact on SOC content ( p < 0.01). Mean 
SOC content at 0–10 cm was significantly different with 
10–30  cm, 30–50  cm, and 50–100  cm, while no signifi-
cant difference was observed between the 30–50 cm and 
50–100 cm.

SOCS demonstrated different patterns compared to 
SOC content (Fig.  2b), which tended to increase with 
soil depth (except 10–30 cm) due to different soil depths. 
Mean SOCS was 48.8 ± 17.5  Mg  ha−1 for 0–10  cm, 
80.1 ± 27.0  Mg  ha−1 for 10–30  cm, 65.6 ± 33.4  Mg  ha−1 
for 30–50 cm, and 131.5 ± 90.3 Mg  ha−1 for 50–100 cm, 
respectively. The Kruskal–Wallis test revealed that soil 
depth had a significant impact on SOCS ( p < 0.01). Mean 
SOCS differed significantly among the 0–10, 10–30, 
30–50 and 50–100 cm.

Spatial modeling
The gradient boosting algorithm was employed to per-
form variable selection for SOCS, resulting in the iden-
tification of 15 important variables (Fig. 3). After feature 
selection, the top six variables were chosen to construct 
the model. Correlation_SAR_VV emerged as the most 
crucial variable in the model, followed by S2_B12 and 
Homogeneity_S2_B4 (see Fig. 4, 5).

Spatial distributions
The spatial patterns of SOCS were generally heterog-
enous (Fig. 6). The study revealed that areas SOCS near 
wetlands, forests, and rivers were notably higher, whereas 
those situated at a longer distance from these areas 
exhibited lower SOCS levels. Spatially, soils with ample 
moisture demonstrated high SOCS, while SOCS tended 
to be low with low soil moisture. Predicted SOCS within 
ranged from 75 to 660 Mg ha−1 with relative high SOCS 

(3)R2
=

∑n
i=1

(
Pi −

−

Oi

)2

∑n
i−1

(
Oi −

−

Oi

)2
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value in grassland. Average SOCS within 100  cm was 
355.7  Mg  ha−1, totaled 0.27 × 109 Mg carbon across the 
Zoige Plateau.

Discussion
Vertical variations of SOC content
SOC content showed a decreasing trend with increasing 
soil depth and significant differences were found among 
0–10  cm, 10–30  cm, and 30–50  cm depths ( p < 0.01, 
Fig. 2a). These findings are consistent with previous stud-
ies conducted by Wei et al. (2023) and Fan et al. (2018). 
Such result was mainly related to carbon input from 
vegetation roots (both through root exudates and root 
mortality) and litter, soil leaching and microbial activities 

(Feida et  al. 2016). The alpine grassland ecosystem of 
Zoige was dominated by herbaceous and shrub vegeta-
tion, e.g., Cyperaceae and Poaceae, and the majority (86–
95%) of root biomass was distributed in topmost 30 cm, 
with over 75% of vegetation roots concentrating within 
10 cm (Li et al. 2004). As the increases of soil depth, the 
decreasing vegetation roots and oxygen limited carbon 
input and microbial activities in subsoil layers (Gomes 
et  al. 2019). Therefore, SOC content still experienced a 

Fig. 2  a Relationship between SOC content and soil depth. b Relationship between SOCS and soil depth. The letters ‘a’, ‘b’, ‘c’ and ‘d’ represent 
the significance of differences, while the line graph represents the average values of different content depths and the grey dots represent 
the distribution of the values

Fig. 3  Ranking of variable importance

Fig. 4  The impact of increasing the number of variables on R2. 
The results of tenfold cross-validation showed that XGBoost could 
satisfactorily predict SOCS with a model efficiency of 0.59 with RMSE 
of 95.24 Mg ha−1. XGBoost tended to overestimate SOCS in areas 
with low SOCS and underestimate SOCS in areas with high SOCS
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decreasing trend from 30–50 cm to 50–100 cm, although 
the difference in SOC content between 30–50  cm and 
50–100  cm was not statistically significant ( p > 0.05). 
Although SOCS showed an increasing trend along soil 
depth, it was related to the different depths of each soil 
layer. If the depth of each layer was consistent, there was 
still a decreasing trend with the increasing soil depth 
with high SOCS in topsoil and low SOCS in subsoil. On 
the other hand, higher SOC in topsoil layer indicated 
high risks of large amounts of carbon loss from topsoil 
when significant human activities occur in the Zoige Pla-
teau. Our results further highlight the urgent soil protec-
tion from over grazing and sandification under warming 
climate.

SOC content was 73.2, 50.6, 37.4 and 33.9  g  kg−1 for 
0–10 cm, 10–30 cm, 30–50 cm and 50–100 cm, respec-
tively, which were generally higher than mean SOC 
content from 0–100  cm reported in previous  studies, 
with 23.31 g kg–1 in Heihe River Basin (Wei et al. 2023), 
12.87  g  kg−1 in the Loess Plateau (Yu et  al. 2019) and 
12.09 g  kg−1 in the Tuojiang River Basin (Wang et  al. 
2023). High SOC content was mainly resulted from low 
temperature in the Zoige Plateau. For example, mean 
temperature was 1  °C with the lowest temperature of 
− 10.5 to − 7.9 °C in January and the highest temperature 
of 10.9 to 11.4  °C in July. The low temperature contrib-
uted to reduced soil microbial activity and low organic 
matter decomposition, creating favoring carbon accumu-
lation (Bai et al. 2013; Gao et al. 2007).

Even in the alpine meadows of Zoige, where the soil 
depth ranges from 50 to 100 cm, the average SOC con-
tent (33.9  g  kg−1) is significantly higher than the aver-
age surface SOC content (14.3 g kg−1) in cultivated soils 
across China (Li et  al. 2022). When compared to other 
plain ecosystems, SOC content in the alpine meadows of 
Zoige is consistently high (Cai et al. 2013). For instance, 
in the Luya mountain typical forest, the surface SOC 
content can reach up to 29.93  g  kg−1, but it declines to 
near-zero levels at a depth of 100  cm (Wu et  al. 2011). 
In the grassland ecosystems of the Loess Plateau, the 
surface SOC content is highest at 8.45  g  kg−1, while it 
drops to only 0.99  g  kg−1 at a depth of 100  cm (Cheng 
et al. 2012). Some studies suggest that the distribution of 
SOC in Zoige can extend as deep as 4 m (Cai et al. 2013). 
These findings highlight the unique characteristics of 
SOC distribution in the Zoige Plateau compared to other 
ecosystems and act as a critical carbon pool in terrestrial 
ecosystems.

Model and method selection for SOCS modeling
Our results indicated that the overall performance of the 
XGBoost method was favorable, consistent with previous 
findings (Wang et  al. 2019a; Yu et  al. 2020). Zhou et  al. 
(2020a) demonstrated that machine learning algorithms 
based on boosting methods exhibited significantly supe-
rior predictive performance for SOCS compared to ran-
dom forest (RF) and support vector regression (SVR). 
This could be attributed to the iterative nature of boost-
ing algorithms, which progressively enhanced prediction 
accuracy by iteratively improving upon previous results. 
Moreover, the incorporation of regularization terms in 
the XGBoost method based on tree complexity reduced 
model variance, prevented overfitting, and further 
enhanced prediction accuracy. These factors consistently 
contributed to superior predictive outcomes obtained 
with the XGBoost method when compared to tradi-
tional boosted regression trees (BRT) and RF methods 

Fig. 5  The correlation between predicted and observed SOCS 
according to tenfold cross-validation

Fig. 6  Spatial distribution of SOCS (Mg ha−1)
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in numerous prior studies. However, these conclusions 
differ from those reported by Mahmoudzadeh et  al. 
(2020), who argued that RF outperformed other meth-
ods in terms of predictive performance. This indicates 
that the uncertainties inherent in XGBoost and other 
machine learning prediction techniques were frequently 
influenced by various factors, including the abundance 
of SOCS in the study region, the choice of environmen-
tal variables, and modeling inaccuracies. There was no 
universally standardized prediction approach that guar-
antees the optimal performance of predictive models 
(Gomes et al. 2019; Zhou et al. 2020; Zhou et al. 2023b). 
Therefore, it was crucial to conduct extensive analysis 
and testing to determine the optimal prediction method. 
Furthermore, considering time efficiency aspects, the 
parallel learning capability supported by the XGBoost 
method leads to relatively faster model execution speed 
compared to BRT and RF methods (Chen and Guestrin 
2016). Additionally, the findings demonstrated high effi-
ciency exhibited by the XGBoost method in predicting 
SOCS in the Zoige Plateau.

Besides, the selection of remote sensing imagery 
played a crucial role in determining the modeling accu-
racy of SOCS (Gholizadeh et al. 2018b; Zhou et al. 2020). 
Through comparing various satellite images in differ-
ent areas, Castaldi et al. (2019a) found that the choice of 
remote sensing data and study area has varying degrees 
of influence on prediction accuracy. Earlier studies on 
SOCS prediction predominantly relied on a single type 
of sensor, such as Landsat or MODIS. For instance, Vau-
dour et al. (2013) and Gholizadeh et al. (2018b) examined 
the potential of Sentinel-2 optical data in predicting soil 
properties. This is attributed to the strong correlation 
between soil properties and vegetation cover, where veg-
etation indices are able to capture variations in soil prop-
erties, especially SOCS (Gholizadeh et al. 2018b).

In the present study, the combined use of Sentinel-1 
and Sentinel-2 images demonstrated that Correlation_
SAR_VV from S1 (Sentinel-1) was the most important 
variable in predicting SOCS (Fig. 3), because Sentinel-1 
imagery can effectively predict SOCS by capturing short-
term vegetation changes. Similarly, Yang and Guo (2019) 
reported a significant correlation between backscattering 
coefficients obtained from Sentinel-1 images and SOCS. 
The model construction primarily focused on S1 and S2 
band reflectance and their derived indices, while indi-
ces like NDVI were not selected by the XGBoost model. 
Although this finding contradicts the previous belief that 
NDVI is an important indicator for predicting SOCS, it 
aligned with the findings of Zhou et  al. (2020a). Impor-
tantly, the texture index of the Sentinel-1 VV band was 
identified as the most significant variable, implying that 
Synthetic Aperture Radar (SAR) data can enhance the 

modeling accuracy in predicting SOCS, because S1 and 
S2 reflectance and derived indices carry more essential 
information for SOCS than vegetation indices. These 
results demonstrated that combining optical and radar 
sensors can effectively improve the modeling accuracy 
for modeling SOCS, particularly in regions that face 
cloud cover challenges like the Zoige Plateau. However, 
this finding contradicts the report by Shafizadeh-Mogh-
adam et  al. (2022), who stated that the inclusion of S1 
data does not improve the performance of any learning 
model. This discrepancy may arise from different choices 
of machine learning algorithms and the significant influ-
ence of various types and combinations of environmental 
variables on the selection of important variables.

Spatial distributions of SOCS
Our study reveals that grassland soils located in wet-
lands, riverbanks, and forest edges exhibit high levels of 
SOCS (Fig.  6), which may be attributed to the high soil 
moisture content in this region. Previous studies have 
demonstrated a positive correlation between soil mois-
ture content and SOCS (Cheng et  al. 2006; Gao et  al. 
2007; Li et al. 2007), which is consistent with the findings 
of in the Aba grasslands (Yang et al. 2014). There are sev-
eral possible reasons for this finding. Firstly, in the sur-
face layer, optimal soil moisture content can influence 
the uptake and utilization of organic matter and other 
nutrients by plants (Yu et  al. 2019). Secondly, above-
ground vegetation and root biomass tend to increase in 
response to abundant soil moisture (Cong et  al. 2016). 
Lastly, as soil moisture levels rise to optimal thresholds, 
the decomposition rates of surface litter and shallow-
root fine roots accelerate, thereby facilitating the accu-
mulation of SOCS. However, for the subsoil layer, under 
favorable thermal conditions, soil respiration rates were 
notably reduced by soil moisture content. Meanwhile, 
soil respiration decreased under too low or too high soil 
moisture. In regions typified by high-altitude meadows 
adjacent to wetlands, riverbanks, and forest boundaries, 
characterized by sustained high soil moisture levels, soil 
respiration rates exhibit comparatively slower kinetics 
compared to lowland grasslands. Consequently, this envi-
ronment fosters a greater accumulation of deep SOCS (Li 
et al. 2018; Suh et al. 2009).

A recent study further found that decreased soil water 
content was the direct reason for SOC degradation due to 
the decline of carbon input from vegetation (Dong et al. 
2021). Understanding the relationship between soil mois-
ture content and SOCS had significant implications for 
land management and carbon sequestration strategies. 
Because it was difficult to understand SOCS in a short 
term, soil water content change (easier to measure than 
SOCS) would be an important indicator for predicting 
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SOCS in the Zoige Plateau. Since the  1950s, due to 
intensive human disturbance (e.g., drainage) and climate 
change, the Zoige Plateau suffered from a significant loss 
of wetland (Wu et al. 2011; Xiang et al. 2009), which had 
significantly increased soil respiration and decreased 
SOCS (Bai et al. 2013). In terms of global climate change, 
conservation efforts targeting towards preserving and 
restoring wetland areas with high soil moisture content 
are necessary to preserve regional carbon sequestration 
service and carbon budget. Therefore, the newly devel-
oped SOCS product with a spatial resolution of 10 m has 
important implications for informed land management 
and ecological restoration.

Conclusion
In this study, we investigated the spatial and vertical dis-
tribution characteristics of SOCS in the Zoige Plateau 
using Sentinel-1 and Sentinel-2 combining field observa-
tions. Our results showed that SOC content had a signifi-
cant vertical distribution and was generally higher than 
that of other areas due to high altitude, low temperature 
and soil microbial activities. The XGBoost algorithm 
integrating Sentinel-1 and Sentinel-2 images provided 
satisfactory modeling efficiency of 0.59 in SOCS, which 
was relatively higher compared to several other stud-
ies that used only single satellite image, highlighting the 
importance of model and satellite images in SOCS pre-
diction. The predicted SOCS displayed a remarkable spa-
tial heterogeneity, and newly developed SOCS map with 
a fine spatial resolution of 10  m would have important 
applications in land management, ecological restoration 
and protection in the Zoige Plateau.
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