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Abstract 

Background  Deciduous forests in eastern North America experienced a widespread and intense spongy moth 
(Lymantria dispar) infestation in 2021. This study quantified the impact of this spongy moth infestation on carbon 
(C) cycle in forests across the Great Lakes region in Canada, utilizing high-resolution (10 × 10 m2) Sentinel-2 satellite 
remote sensing images and eddy covariance (EC) flux data. Study results showed a significant reduction in leaf area 
index (LAI) and gross primary productivity (GPP) values in deciduous and mixed forests in the region in 2021.

Results  Remote sensing derived, growing season mean LAI values of deciduous (mixed) forests were 3.66 (3.18), 2.74 
(2.64), and 3.53 (2.94) m2 m−2 in 2020, 2021 and 2022, respectively, indicating about 24 (14)% reduction in LAI, as com-
pared to pre- and post-infestation years. Similarly, growing season GPP values in deciduous (mixed) forests were 1338 
(1208), 868 (932), and 1367 (1175) g C m−2, respectively in 2020, 2021 and 2022, showing about 35 (22)% reduction 
in GPP in 2021 as compared to pre- and post-infestation years. This infestation induced reduction in GPP of deciduous 
and mixed forests, when upscaled to whole study area (178,000 km2), resulted in 21.1 (21.4) Mt of C loss as compared 
to 2020 (2022), respectively. It shows the large scale of C losses caused by this infestation in Canadian Great Lakes 
region.

Conclusions  The methods developed in this study offer valuable tools to assess and quantify natural disturbance 
impacts on the regional C balance of forest ecosystems by integrating field observations, high-resolution remote 
sensing data and models. Study results will also help in developing sustainable forest management practices 
to achieve net-zero C emission goals through nature-based climate change solutions.

Keywords  Spongy moth, Infestation, Carbon, Gross ecosystem productivity, Leaf area index, Temperate forest, 
Remote sensing, Sentinel-2, Eddy covariance

Introduction
Forest ecosystems cover more than 30% of the terrestrial 
area and play a crucial role in the global carbon (C) cycle 
through the processes of photosynthesis and respiration 
(FAO 2010; Ahmed 2018). The balance between these two 
opposing fluxes determines whether the forest ecosys-
tem is C sink or source (DeLucia et al. 2007; Litton et al. 
2007; Schmid et  al. 2016; Chi et  al. 2021). Forests have 
consistently demonstrated higher levels of gross primary 
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productivity (GPP) and established the Earth’s most 
substantial C pools (Peters et al. 2007). Forests in North 
America are estimated to contribute approximately 76% 
of the region’s net terrestrial C sequestration (Zhao et al. 
2021). In Canada, forest ecosystems have accumulated 
on average 173 million tons of C per year over much of 
the past century (Gray et al. 2006; Hengeveld et al. 2008). 
However, this rate of C sequestration can be influenced 
by natural disturbances such as wildfires and insect infes-
tations (Kurz et al. 2002; Kalamandeen et al. 2023).

In North America, frequent outbreaks of insect infes-
tations including mountain pine beetle (Dendroctonus 
ponderosae) infestation in western parts and spongy 
moth (Lymantria dispar) infestations in eastern regions 
have been the major factors impacting forest growth, 
health and C balance (Kurz et  al. 2002). The spongy 
moth is a non-native species originally from Europe and 
Asia (Joria et  al. 1991; Wang et  al. 2022), that was first 
accidentally introduced in Boston area in USA in 1869 
(Williams et al. 1985; Picq et al. 2023). Since then, it has 
expanded its range from New England to southward in 
Virginia to North Carolina and westward in Wisconsin, 
Michigan and the Great Lakes regions in USA and Can-
ada (De Beurs and Townsend 2008; Hajek et  al. 2021). 
Spongy month causes defoliation of various deciduous 
and mixed  forests, including oak (Quercus), birch (Bet-
ula), aspen (Populus), sugar maple (Acer saccharum), 
American beech (Fagus grandifolia), balsam fir (Abies 

balsamea), and in sever infestation cases eastern white 
pine (Pinus strobus) and Colorado blue spruce (Picea 
pungens). The spongy moth’s life cycle involves egg dis-
persion before April, with early-stage caterpillars per-
sisting until mid-May, late-stage caterpillars emerging 
in June, pupae developing in mid-July, and adult moths 
appearing by mid-August (Government of Ontario 2024). 
Defoliation typically begins in the early caterpillar stage 
and intensifies throughout the late caterpillar stage from 
June to August.

In Eastern North America, spongy moth outbreaks 
have occurred roughly every seven to ten years with the 
past major or significant infestations recorded in 1981, 
1985, 1991, 2002, 2008 and 2021 (OMNRF 2024; ONDM-
NRF 2021). Since 1970, it is estimated that over 30 mil-
lion hectares of forest have experienced defoliation due to 
spongy moth infestation (De Beurs and Townsend 2008; 
Hajek et al. 2021). The spongy moth outbreak of 2021 was 
the largest on record in the region where almost 1.78 mil-
lion hectares of forests were impacted in the province of 
Ontario, Canada (Fig. 1) and 2.5 million hectares affected 
in the United States (USDA 2023; OMNRF 2024). In 
Ontario, 17,797  km2 forest area was severely impacted 
by the infestation (OMNRF 2024). The large-scale 2021 
spongy moth defoliation severely impacted C sequestra-
tion capabilities of forest ecosystems in both Canada and 
USA and posed a considerable challenge for the health 
and growth of forests (Chung et al. 2021). With about 595 

Fig. 1  Study area map. The LULC map was generated by machine learning-based Google Earth Engine (GEE) using Sentinel-2 remote sensing data 
from the composite images of the growing season of 2020



Page 3 of 15Hussain et al. Ecological Processes           (2024) 13:37 	

million hectares of non-affected forests in North Amer-
ica that are climatically suitable habitats for spongy moth 
expansion, future outbreaks may potentially pose a major 
challenge for forest growth, health and C uptake in the 
region (Gray 2004; Kalamandeen et al. 2023). Therefore, 
there is a need to develop effective forest monitoring and 
management strategies and develop integrated methods 
to quantify the loss of C caused by these infestations, 
which are expected to become more widespread, intense 
and frequent in future due to climate change (De Beurs 
and Townsend 2008; Harvey et al. 2022).

Remote sensing techniques have been effectively 
employed for estimating spongy moth defoliation areas 
since the mid-1980s utilizing Earth observatory satellite 
imagery from platforms such as Landsat (Williams et al. 
1985; Joria et al. 1991; White et al. 2017), SPOT-1 (Cie-
sla et  al. 1989), and MODIS (De Beurs and Townsend 
2008). These satellite systems typically classify regions 
impacted by spongy moth infestations into different 
categories, including light, moderate, and heavy defo-
liation, while also identifying regions of healthy forests 
(Williams et al. 1985; Ciesla et al. 1989; Joria et al. 1991; 
Kovalev et al. 2023). However, the precise categorization 
of the intensity of spongy moth infestation has been chal-
lenging, primarily due to the shorter duration of spongy 
moth outbreak and low or moderate resolution of satel-
lite imagery (e.g. from MODIS, SPOT, and Landsat Satel-
lites). Recent advances in high-resolution remote sensing 
techniques have significantly improved the accuracy of 
remote sensing images, enabling not only the detection 
of defoliation areas but also providing capabilities for 
the precise measurements of the extent of these events 
and quantifying defoliation impacts on C sequestration 
(Townsend et  al. 2004; Kovalev et  al. 2023). It allows 
systematic assessment of the influence of spongy moth 
infestations on forest ecosystems and their C balances.

Sentinel-2A and 2B satellites provide high-resolution 
(10 × 10 m2) images that are very suitable for monitoring 
insect infestation such as spongy moth defoliation and 
for quantifying forest C losses through the exploration of 
vegetation indices (VIs), and estimation of GPP (Hussain 
et al. 2024). Several studies in the literature have success-
fully estimated infestation impact on forest growth and 
health by utilizing VIs such as the normalized difference 
vegetation index (NDVI) and the enhanced vegetation 
index (EVI) (Carter and Knapp 2001; Fraser & Latifovic 
2005; Eklundh et  al. 2009). However, studies focusing 
on the quantification of the effects of insect defoliation 
on forest C dynamics has been limited (De Beurs and 
Townsend 2008; Senf et al. 2017; Kovalev et al. 2023).

The primary aim of this study is to determine the 
impact of 2021 spongy moth (Lymantria dispar) infes-
tations on forest growth and productivity in the Great 

Lake region in Canada using high-resolution (10 × 10 m2) 
Sentinel-2 satellite remote sensing data and eddy covari-
ance (EC) flux observations from 2020 to 2022. The spe-
cific objectives of this study are to: (i) estimate seasonal 
variations and trends in the leaf area index (LAI) using 
high resolution remote sensing data; (ii) determine for-
est photosynthetic uptake and gross primary productivity 
(GPP) using observed eddy covariance flux and remote 
sensing data; and (iii) quantify carbon (C) losses across 
the region because of this wide spread and server spongy 
moth infestation. To delineate distinct vegetation catego-
ries within the study area, the study employed a machine 
learning-based land use/land cover (LULC) classifica-
tion scheme using Sentinel-2 data in the Google Earth 
Engine (GEE) platform. An examination of the suitabil-
ity of utilizing LAI to measure the biomass and GPP of 
various affected vegetation cover types across the region 
was also conducted. These assessments will contribute to 
the development of sustainable forest management strat-
egies and help to achieve net zero carbon goals through 
nature-based climate change solutions.

Materials and methods
Study area
The study area covers a region from 75° W to 84° W 
longitude and 42° N to 48° N latitude, situated along 
the shores of Lake Ontario, Lake Erie, and Lake Huron, 
encompassing approximately 178,000  km2 in southern 
and central Ontario, Canada (Fig.  1). Much of this area 
is part of Great Lakes-St. Lawrence forest which is domi-
nated by different ages of hardwood forests including 
a variety of tree species such as sugar maple (Acer sac-
charum), red maple (Acer rubrum), white oak (Quercus 
alba), red oak (Quercus rubra), yellow birch (Betula 
alleghaniensis), basswood (Tilia americana), white pine 
(Pinus strobus), red pine (Pinus resinosa), Eastern hem-
lock (Tsuga canadensis) and white cedar (Thuja occiden-
talis). Deciduous, conifer and mixed forests cover up to 
62% land of this area. The southern latitudes of the study 
area are dominated by cropland such as corn, soybean, 
and forage for livestock production, as well as decidu-
ous forests which cover about 10% of the area (OMNRF 
2024). The remaining land is categorized as primary wet-
lands or urban areas. The northern parts of study area 
is part of the Boreal forest and the Georgian Bay low-
lands forest, while the central and southern forests are 
also characterized as Carolinian forests. The southern 
region is more conducive to agriculture, more densely 
populated, and urbanized. In contrast, the central and 
northern regions of the study areas are mountainous ter-
rain covered with forests and have a relatively untouched 
environment (Baldwin et al. 2000; Shah et al. 2022).
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The climate of the study area is characterized as cool 
continental, which is influenced by regional factors due 
to area proximity to the Great Lakes. The mean annual 
precipitation of 786  mm  year−1 based on observations 
recorded at the Toronto Pearson Airport Weather Sta-
tion during the normal climate period from 1991 to 2020 
(Environment and Climate Change Canada 2023). 14% of 
the precipitation fell as snow. The mean annual tempera-
ture varies across the region depending on latitude, with 
mean annual temperature of 8.2 °C from 1991 to 2020 at 
the Toronto Pearson airport weather station (Environ-
ment and Climate Change Canada 2023). Additionally, 
mean temperature during the growing season fluctuates 
between 15 and 30 °C (Wazneh et al. 2017).

Remote sensing and observed eddy covariance flux 
datasets
Sentinel-2A and Sentinel-2B (S2) satellites of the 
COPERNICUS satellite systems of the European Union’s 
earth observation program (Drusch et  al. 2012) provide 
high-resolution datasets for terrestrial ecosystem moni-
toring (Löw & Koukal 2020). The Sentinel-2 multispec-
tral instrument (MSI) system delivers 13 spectral bands, 
including 10  ×  10 m2 spatial resolution of visible and 
near-infrared (NIR) and 20 × 20 m2 spatial resolution of 
short-wave infrared (SWIR) spectrum with up to five-day 
revisiting time (Drusch et al. 2012; Sun et al. 2021). This 
study used Sentinel-2 data to calculate vegetation indi-
ces (VIs) such as normalized difference vegetation index 
(NDVI), and leaf area index (LAI) for biomass estima-
tion. Sentinel-2 satellite datasets were downloaded from 
https://​earth​explo​rer.​usgs.​gov/. Sentinel-2 (S2) data was 
also used to estimate GPP while utilizing radiative model 
and observed eddy covariance (EC) flux data.

The observed EC flux data were obtained from Tur-
key Point Environmental Observatory (Arain et al. 2022; 
Beamesderfer et al. 2020; Latifovic and Arain 2024). This 
site is known as the Canadian Turkey Point deciduous 
forest site (CA-TPD) and is associated with of the Global 
Water Futures Observatory Program, Ameriflux and 
Global Fluxnet network (Arain 2018). Although EC flux 
and meteorological variable has been continuously meas-
ured at this site since 2012, CO2 fluxes for three years, 
i.e. 2020 (pre-infestation), 2021 (infestation) and 2022 
(post infestation) were used in the analysis presented 
in this study. 2021 spongy month infestation was quite 
severe at our forest site where majority of deciduous trees 
were defoliated as shown in Fig. 2 and further discussed 
in Latifovic and Arain (2024). The quality control of EC 
flux and meteorological data was conducted utilizing the 
Biometeorological Analysis, Collection, and Organiza-
tional Node (BACON) software, which was developed 
by our lab (Brodeur 2014). Outliers within the dataset 

were detected and eliminated through the BACON soft-
ware and small gaps in the dataset were filled through 
linear interpolation from adjacent forest sites CA-TP3 
and CA-TP4. Further details of EC fluxes and meteoro-
logical measurements, data gap filling and partitioning of 
observed CO2 flux in ecosystem respiration and GPP are 
given in Latifovic and Arain (2024). In addition, no for-
est management activity had taken place at the forest in 
recent years.

Land use and land cover (LULC) classification
The GEE platform’s machine-learning approach was uti-
lized to create cloud-free Sentinel-2 data for the LULC 
analysis (Nasiri et  al. 2022). The GEE cloud computing 
approach was utilized to collect images and process data 
for growing season of 2020 (Fig. 1). GEE-based machine 
learning classifier, support vector machine (SVM) was 
used to classify six primary land cover categories, namely 
water bodies, urban areas, agricultural land, coniferous 
forest, deciduous forest and mixed forest (Sheykhmousa 
et al. 2020). Each land cover category was assessed using 

Fig. 2  Defoliated trees due to spongy moth infestation at the Turkey 
Point Environmental Observatory’s deciduous forest site on 21 June 
2021

https://earthexplorer.usgs.gov/
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650 ground point samples to extract per-band pixel val-
ues from the Sentinel-2 dataset, ensuring that the data 
used had minimum cloud cover (less than 5%). The evalu-
ation of classification accuracy provided a comparison 
between LULC classes derived from the training point 
and data obtained during the testing phase (Nasiri et al. 
2022), which involved a total of 3900 ground point sam-
ples. This accuracy assessment was performed using con-
fusion matrices (Table 1). The overall accuracy based on 
these confusion matrices was 95.7%.

The analysis revealed that coniferous forests occupied 
the largest land area, covering 43,017  km2, which repre-
sents 24.29% of the total studied area. Agriculture was the 
second-largest land cover category, covering 42,294 km2, 
accounting for 23.88% of the total area. Deciduous forests 
covered 36,574 km2, constituting 20.64% of the total area 
and mixed forests occupied 23,936 km2, making up to 
13.51% of the total area. Additionally, water  bodies and 
wetlands covered 13,053 km2, covering 7.37% of the total 
area, while the urban areas occupied 19,256 km2, cover-
ing 10.87% of the total area.

Retrieval of leaf area index (LAI)
LAI was calculated using the Sentinel-2 data and the 
PROSAIL model which is the combination of PROS-
PECT (Jacquemoud and Baret 1990; Feret et  al. 2008) 
and SAIL model (Verhoef 1984). The PROSPECT model 
provides leaf optical properties and the SAIL model 
provides plant canopy reflectance (Sun et  al. 2021). The 
PROSPECT model measures leaf hemispherical reflec-
tance and transmittance to define leaf optical elements 
at 400–2500 nm through six input parameters: leaf struc-
ture parameter (N, unitless), leaf chlorophyll content 
(Cab), carotenoid content (Car), brown pigment content 
(Cbrown), equivalent water thickness (Cw) and dry matter 
content (Cm) (Xu et al. 2019). The SAIL model calculates 
canopy reflectance as a function of leaf optical elements 
obtained from PROSPECT and six input parameters: leaf 
inclination distribution function (LIDF), LAI, hot spot 
parameter (hspot), solar zenith angle (tts), view zenith 
angle (tto), relative azimuth angle (psi) (Sun et al. 2021). 
All input parameters for the PROSAIL model are shown 
in Table 2.

Table 1  Confusion matrices-based accuracy assessment of land use and land cover (LULC) classification

Overall accuracy: 95.7%

Class Water body Unban area Agricultural 
land

Deciduous forest Coniferous forest Mixed forest Producer 
accuracy (%)

User 
accuracy (%)

Water body 627 1 0 0 0 2 98.4 99.4

Unban area 1 617 0 6 2 2 96.7 98.0

Agricultural land 3 1 622 8 6 10 97.2 96.2

Deciduous forest 3 9 12 606 22 12 96.4 94.2

Coniferous forest 4 12 7 16 610 11 95.5 94.7

Mixed forest 12 10 9 14 10 613 94.7 94.1

Table 2  Input parameters for the PROSAIL model. The fixed value is used in this study

Model Input Parameters Symbol Unit Range Fixed value

PROSPECT Leaf structure N Dimensionless 1.5–3.0 1.5

Chlorophyll content Cab µg cm−2 10–80 40

Carotenoid content Car µg cm−2 10

Brown pigment Cbrown Arbitrary units 0

Equivalent water thickness Cw cm 0.01

Dry matter content Cm g cm−2 0.009

SAIL Leaf inclination distribution function LIDF Shape Spherical Spherical

LIDFa Slope − 1 to 1 − 0.35

LIDFb Kind of distortion − 1 to 1 − 0.15

Leaf area index LAI m2 m–2 0–8

Hot spot parameter hspot m/m 0.03–0.1 0.01

Solar zenith angle tts (°) 20–70 30

View zenith angle tto (°) 0–30 10

Relative azimuth angle psi (°) 0
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The spectral response function for Sentinel-2 satellite 
data were used from band effective reflectance. The band 
reflectance was calculated based on the measured canopy 
hyperspectral reflectance and simulated reflectance from 
the PROSAIL model. The band reflectance was calculated 
by Wang et al. (2015) as follows:

Its derivative follows as:

where ρs(�) is the simulated band reflectance of the 
sensor,  ρs(�i) is the simulated reflectance of the PRO-
SAIL model, which is coded in MATLAB (MathWorks 
Inc.). �min is equal to 400  nm, the minimum value of 

(1)ρs(�) =
∫
�max

�min
ρs(�i)ψ(�i)d�

∫
�max

�min
ψ(�i)d�

(2)

ρs(�) =
∫2500400 ρs(�i)ψ(�i)d�

∫2500400 ψ(�i)d�
≈

2500
400 ρs(�i)ψ(�i)

2500
400 ψ(�i)

wavelength limit and �max is 2500, the maximum value 
of the wavelength limit and ψ(�i) is the spectral response 
coefficient of Sentinel-2.

Remote sensing‑based gross primary productivity (GPP) 
estimation
GPP was estimated using the Sentinel-2-based light use 
efficiency (LUE) model to quantify the CO2 uptake from 
different vegetation cover types. LUE model has the 
empirical capability to estimate GPP (Zhang et al. 2017; 
Sun et al. 2019) using remote sensing data. Observed air 
temperature (Ta) and photosynthetically active radia-
tion (PAR) data were used with satellite data in the LUE 
model to calculate GPP (Hussain et al. 2024). Following 
equations were used as part of the LUE model (Table 3).

In Table  3, APARchl is absorbed photosynthetically 
active radiation (PAR); fPARchl is the fraction of PAR esti-
mated by chlorophyll or linear function of EVI, which 
is modified following Xiao et al. (2004). 0.1 and 1.25 are 
constants to adjust for vegetated land and were validated 
from solar-induced chlorophyll fluorescence (SIF); εg is 
the light use efficiency (LUE), ε0 is the apparent quan-
tum yield or maximum light use efficiency [µmol CO2 per 
µmol photosynthetic photon flux density (PPFD)]; Tscalar, 
Wscalar are the downward-parameter scalars for the 
effects of temperature and water respectively on LUE by 
C3/C4 photosynthesis pathways; Ta, Tmin , Tmax, and Topt 
refer to the mean, minimum, maximum, and optimum 
temperature for photosynthesis, respectively; LSWI is 
the land surface water index. Model estimated daily GPP 
values were compared with the observed GPP values for 
2020 and 2021 as shown in Fig.  3. There was a strong 
correlation between satellite-derived and observed daily 

Table 3  Equations used to calculate ecosystem properties

Variables Equation References

GPP GPP = APARchl × εg Monteith (1972)

APARchl = PAR × fPARchl Xiao et al. (2004)

fPARchl = (EVI − 0.1) × 1.25 Zhang et al. (2017)

LUE εg = ε0 × Tscalar × Wscalar Zhang et al. (2017)

Tscalar =
(Ta−Tmax)×(Ta−Tmin)

(T−Tmax)×(Ta−Tmin)−(Ta−Topt)
2

Zhang et al. (2016)

Wscalar =
1+LSWI

1+LSWImax
Zhang et al. (2016)

Indices NDVI = (RNIR − RRed)/(RNIR + RRed) Rouse et al. (1974)

EVI = 2.5×
RNIR−RRed

RNIR+6×RRed−7.5×RBlue+1
Huete et al. (2002)

LSWI = (RNIR − RSWIR)/(RNIR + RSWIR) Xiao et al. (2004)

Fig. 3  The relationship between satellite-derived and eddy covariance (EC) flux tower based observed daily gross primary productivity (GPP) values 
for a agricultural lands, b conifer forests and c deciduous forests, respectively from 2020 to 2021
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GPP values for agricultural lands, conifer forests  and 
deciduous forests, respectively (Fig. 3a–c).

Statistical analysis
Weighted double logistic (WDL) function was used to 
fit the daily time series of VIs as described in Yang et al. 
(2019). WDL consists of two logistic functions based on 
the vegetation growth activity, including the growing part 
(f1) and the declining part (f2) to set the model parame-
ters which can provide the daily time series using follow-
ing equations (Yang et al. 2019).

where y is the time series of variable, d and c + d denote 
the minimum value (min(f )) and maximum value 
(max(f )), respectively; c indicates the local amplitude; 
and a and b determine the shape and slope of the logistic 
function, respectively. The subscripts 1 and 2 identify the 
parameters of the growing and declining parts, respec-
tively. In the retrieval of these unknown parameters, the 
initial d and c are assigned as min(f ) and max(f ) − min(f ), 
respectively. Thus, the principal problem is to derive 
parameters a and b. Considering the different weights of 
each of the data points, we transformed the non-linear 
fitting problem into a linear one by a function transfor-
mation as  a1 + b1t = ln(c1f1 − d1 − 1). Furthermore, the 
WLS method is applied to solve the analytic expression 
of the logistic function for each part (f1 and f2).

We also utilize standardized anomalies to understand 
temporal variations and deviations from normal growth 
trends over the study period. We calculated these anoma-
lies by subtracting the mean GPP during three growing 
periods from the daily GPP values and then dividing it 
by the standard deviation observed over the same peri-
ods. These calculations followed Eqs. 7 and 8 as shown by 
Zhao et al. (2022).

where ysd is standardized anomaly, yd is daily anomaly 
and x is daily GPP and x is the three-year mean GPP esti-
mated from Sentinel-2.

(3)y = f1 + f2 + e

(4)f1 =
c1

1+ ea1+b1t
+ d1

(5)f2 =
c2

1+ ea2+b2t
+ d2

(6)e = max(c1 + d1, c2 + d2)

(7)ysd =
yd − yd

σ

(8)yd = x − x

Results
Climatic conditions
The meteorological variables measured at our site from 
2020 to 2022 are shown in Figs. 4 and 5. The mean annual 
Ta was 10.6, 11.3, and 10.6  °C for 2020, 2021, and 2022, 
respectively. The daily maximum Ta was observed dur-
ing July–August periods, while minimum Ta values were 
observed during January–February, reflecting the typi-
cal seasonal patterns in the Great Lakes region (Fig. 4b). 
At the same time, Ts was 9.7, 10.3, and 9.6 °C. Temporal 
variability in Ts closely followed the temporal variability 
of Ta, with a correlation coefficient of 0.89 (P < 0.001). 
Additionally, photosynthetically active radiation (PAR) 
exhibited similar patterns to temperature variations 
(Fig. 4a, b), with respective daily values of 317, 321, and 
343 μmol m−2 d−1 for 2020, 2021, and 2022.

The daily mean values of VPD were 0.37, 0.38, and 
0.38 kPa for 2020, 2021, and 2022, respectively. The simi-
larity between VPD values across the years indicates 
overall relatively stable atmospheric moisture conditions 
during the study period. Additionally, VWC during the 
same period was 0.11, 0.12, and 0.11 m3 m−3. The tempo-
ral variations in VWC reflected changes in soil moisture 
following large precipitation events throughout the year 
(Fig. 4d). The annual total precipitation values were 1127, 
1009, and 960 mm for 2020, 2021, and 2022, respectively 
(Fig. 5). 2021 showed a dry period with low precipitation 
values in 2021 from early March to mid-June. This dry 
and rain free period in early parts of the growing season 
in 2021 may have helped spongy moth to establish and 
thrive. Overall, observed meteorological conditions dur-
ing the study period showed similarities with long-term 
observed weather conditions at this site.

Dynamics of remote sensing‑based leaf area index (LAI)
Remote sensing-based monthly mean LAI values for 
major land cover types including deciduous, conifer and 
mixed forests and agricultural lands over the growing 
season are shown in Fig. 6. Deciduous forests had mean 
LAI value of 3.66 (± 1.6), 2.74 (± 1.1), and 3.53 (± 1.5) m2 
m−2, conifer forests had LAI value of 4.34 (± 1.6), 4.28 
(± 1.6), and 4.26 (± 1.5) m2 m−2 and mixed forest had LAI 
value of 3.18 (± 1.4), 2.64 (± 1.1), and 2.94 (± 1.3) m2 m−2 
for 2020, 2021, and 2022, respectively. Mean LAI values 
for agricultural lands were 3.31 (± 2.2), 3.25 (± 2.3), and 
3.11 (± 2.2) m2 m−2 for respective years. The highest LAI 
values were observed for agricultural lands and conifer 
forests in July, followed by deciduous and mixed forests. 
These satellite-derived LAI values showed a large decline 
for deciduous and mixed forests in 2021, when these for-
ests were impacted by spongy moth infestations (Fig. 6c, 
d).
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Mean LAI values for deciduous and mixed forests 
declined by 25 (22)% and 17 (10)% in comparison to 
the pre-infestation (post-infestation) values recorded 
in 2020 (2022). LAI values recovered to almost normal 
levels in 2022 for deciduous forest after the infesta-
tion, while LAI for mixed forest showed relatively lower 
recovery values.

Impact of spongy moth infestation on gross primary 
productivity (GPP)
The satellite derived daily GPP values showed similar 
trends as observed for LAI, with much lower daily GPP 
values for deciduous and mixed forests in 2021 due to 
spongy moth infestation (Fig.  7). In deciduous forests, 
photosynthetic C uptake usually started in mid-May and 
peaked in July with typical maximum daily GPP values 
of about 14 to 16  g  C  m−2  d−1. However, in 2021, GPP 
values rapidly declined at the start of June when spongy 
moth defoliation intensified. Daily GPP values reached as 
low as 3.0 g C m−2  d−1 in July in 2021. Similar low GPP 
values were also observed for mixed forests. GPP saw 
a rebound in late July and August when the short-lived 
spongy moth infestation started to end due to transfor-
mation of leaf-eating larvae (caterpillars) to pupa and 
adult stages. In addition, these decreasing trends of GPP 
were well aligned with the spongy moth life cycle, where 
the late caterpillar stage occurs from mid-May to the end 
of July, causing extensive leaf damage. However, after this 
period, daily GPP values showed some recovery but only 
reached up to 7 to 8 g C m−2 d−1 before the usual autumn 
photosynthetic decline started to take effect in late Sep-
tember. In general, rebounded daily GPP values were 

Fig. 4  Daily mean values of a photosynthetically active radiation (PAR), b air temperature (Ta) and soil temperature (Ts) at 5 cm depth, c vapor 
pressure deficit (VPD), d precipitation (P) and volumetric water content (VWC) from 2020 to 2022

Fig. 5  Daily cumulative precipitation (P) from 2020 to 2022
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even lower for mixed forests due to the combined effects 
of infestation for deciduous forests and usual seasonal 
low soil moisture from late July to August in the region, 
which typically causes lower GPP values in conifer trees. 

However, overall the soil moisture was sufficient for eco-
system production in 2021 (Fig.  4d). In 2020 and 2021, 
the active period of growth for deciduous forests ended 

Fig. 6  Monthly mean leaf area index (LAI) values over the study area for a agricultural lands, b conifer forests, c deciduous forests and d mixed 
forests from 2020 to 2022

Fig. 7  Daily gross primary productivity (GPP, g C m−2 d−1) for a agricultural lands, b conifer forests, c deciduous forests and d mixed forests, 
respectively, from 2020 to 2022. Similarly, cumulative GPP values over the growing season for e agricultural lands, f conifer forests, g deciduous 
forests and h mixed forests, respectively from 2020 to 2022
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by the end of October, while in 2022 deciduous forests 
experienced an earlier end of growing season (Fig. 7c).

In contrast, photosynthetic C uptake in coniferous for-
ests began earlier in April as compared to other vegeta-
tion types and continued until the end of October. The 
maximum daily GPP in conifer forests was observed 
in June, with maximum daily GPP values of about 10 
to 14  g  C  m−2  d−1. In agricultural lands, daily GPP was 
almost zero in April but it started to increase in mid-May 
and peaked in July and August, with maximum daily GPP 
values reaching about 20 to 23 g C m−2 d−1 (Fig. 7a).

These trends were also clearly shown in the standard-
ized daily GPP anomaly values, where GPP in deciduous 
and mixed forests showed large decline, while GPP in 
conifer forests and agricultural lands were not impacted 
(Fig. 8). In 2022, the forest appeared to be fully recovered 
with a notable increase in both the daily mean and sea-
sonal total GPP values as compared to 2021.

Overall, growing season mean daily GPP values in 
deciduous forests were 6.83 (± 4.1), 4.43 (± 2.5), and 7.77 
(± 5.4) g C m−2 d−1 for 2020, 2021 and 2022, respectively. 

Corresponding GPP values for coniferous forests were 
6.87 (± 3.5), 7.10 (± 2.7), and 6.86 (± 2.7) g C m−2 d−1 
and for mixed forests were 6.45 (± 4.2) g C m−2 d−1, 4.81 
(± 2.2) g C m−2 d−1, and 6.12 (± 2.3) g C m−2 d−1. Agricul-
tural lands had growing season mean daily GPP values of 
9.65 (± 5.4), 8.45 (± 6.1), and 9.55 (± 6.2) g C m−2 d−1 in 
2020, 2021, and 2022, respectively (Fig.  7; Table  4). The 
highest cumulative GPP values over the growing season 
were observed in the coniferous forest in all three years, 
followed by deciduous forests, agricultural lands, and 
mixed forests (Fig.  7e–h and Table  4). Maximum GPP 
estimates for conifer forests highlighted their optimum 
photosynthetic activity and proficiency for C uptake. 
Deciduous forests had total growing season GPP values 
of 1338, 869, and 1367 g C m−2 in 2020, 2021 and 2022, 
respectively, while coniferous forests photosynthesized 
1443, 1475, and 1438 g C m−2 and mixed forests exhib-
ited GPP values of 1208, 932, and 1175 g C m−2 for the 
same years (Fig.  7e–h and Table  4). Agricultural lands 
showed cumulative GPP values of 1235, 1266, and 1241 g 
C m−2 over the same period (Fig. 7e–h and Table 4).

Fig. 8  The daily standardized anomaly in gross primary productivity (GPP, g C m−2 d−1) for agricultural lands (a, b, c), conifer forests (d, e, f), 
deciduous forests (g, h, i) and mixed forests (j, k, l) for 2020, 2021 and 2022
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Spatial patterns of total GPP over the growing season 
(April–October) for 2020, 2021 and 2022 are shown in 
Fig. 9. These spatial patterns of GPP clearly showed the 
severely impacted areas and extent of decline in pho-
tosynthetic C update in the region where almost all 
deciduous and mixed forests were impacted. South-
ern areas which had a higher proportion of deciduous 
tree species were more severely impacted. These areas 
were in the north of Lake Erie and west of Lake Ontario 
(Fig.  9c). However, low values of GPP as shown by yel-
low color were prevalent almost all over the study region, 
except in the central and far northwestern parts that 

were dominated by conifer species. Overall, these results 
showed 35 (36)% decrease in total GPP over the growing 
season for deciduous forests in 2021 when compared to 
pre-infestation (post-infestation) years. A similar GPP 
decline for mixed forests was 23 (21) % in 2021 when 
compared to pre-infestation (post-infestation) years 
(Table 4).

Discussion
Remotely sensed LAI measurements have been widely 
used to observe the intensity and extent of defoliation in 
deciduous and mixed forests (De Beurs and Townsend 

Table 4  Mean daily gross primary productivity (GPP) of different vegetation types in growing season (g C m−2)

Vegetation type 2020 2021 2022

Daily mean Seasonal total Daily mean Seasonal total Daily mean Seasonal total

Agriculture land 9.65 ± 5.4 1235 8.45 ± 6.1 1266 9.55 ± 6.2 1242

Conifer forest 6.87 ± 3.5 1443 7.10 ± 2.7 1475 6.86 ± 2.7 1438

Deciduous forest 6.83 ± 4.1 1338 4.43 ± 2.5 868 7.77 ± 5.4 1367

Mixed forest 6.45 ± 4.2 1208 4.81 ± 2.2 932 6.12 ± 2.3 1175

Mean 7.45 1306 6.20 1135 7.58 1305

Fig. 9  a The spongy moth outbreak areas in 2021. The spongy moth outbreak data were collected from the Ontario provincial database (Ontario 
GeoHub 2022). The LULC map was generated by machine learning-based GEE using Sentinel-2 remote sensing data from the composite images 
of the growing season of 2020. The spatial pattern of total gross primary productivity (GPP, g C m−2) over the growing season (April–October) for b 
2020, c 2021 and d 2022
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2008). LAI measurements also provide direct quantifica-
tion of leaf properties, photosynthetic activity, C uptake 
(Jarlan et  al. 2008; Boussetta et  al. 2013; Alton 2016; 
Brown et al. 2020) and often used to estimate vegetation 
biomass utilizing remote sensing-based models (Zolles 
et al. 2021). Our study results showed that the mean LAI 
values for deciduous forests decreased by about 25% in 
2021 as compared to the pre-infestation LAI values in 
2020, and by about 22% as compared to the post-infes-
tation LAI values in 2022. It provided an indication of 
the severity of the impacts of spongy moth infestation 
on forest growth and productivity. We used these LAI 
values as a key indicator to observe the spatial patterns 
and the extent of spongy moth infestation. It helped us 
to observe the trajectory and dynamics of defoliation and 
to determine the timing and extent of canopy recovery 
when larvae or caterpillars were transformed into pupa 
and adult moths after a few weeks (Latifovic and Arain 
2024). We also used these LAI values to calculate remote-
sensing based GPP across the region (Sun et  al. 2021). 
We found a strong positive correlation between LAI and 
remote sensing based GPP values with R2 values of 0.90, 
0.76, 0.86 and 0.67 for agricultural lands, coniferous for-
ests, deciduous forests and mixed forests respectively and 
significance level (p) values of ≤ 0.005 (data not shown). 
Similar strong correlations between LAI and GPP have 
also been found by other researchers (e.g. Qu et al. 2018; 
Zhang et al. 2021; Chen et al. 2023).

Our analysis showed the intense and widespread 
nature of the 2021 spongy moth infestation in the 
region where deciduous and mixed stands experi-
enced large-scale defoliation resulting in 35% and 22% 
decrease in mean daily GPP values as compared to 
2020 and 2022, respectively. Our study not only sup-
ported the earlier inferences that 2021 infestation was 
as record disturbance event in North America (Embrey 
et al. 2012; CFIA 2021; Chung et al. 2021; Gooderham 
et al. 2021; Government of Canada 2021; MNRF 2021; 
MNDMNRF 2022; TRCA 2022; Clark et al. 2022; Foster 
et  al. 2022; Coleman and Liebhold 2023; Latifovic and 
Arain 2024), but it also provides quantitative assess-
ment of the photosynthetic C uptake reduction across 
the region due to defoliation (Dymond et  al. 2010; 
Medvigy et  al. 2012; Kretchun et  al. 2014). These C 
uptake reduction estimates have significance because in 
recent years most of the terrestrial C cycle studies in 
the literature have been reporting an increase in veg-
etation C uptake due to warmer temperatures, longer 
growing seasons and CO2 fertilization effects (Goodale 
et  al. 2002; Harris et  al. 2016; Birdsey et  al. 2019; Fei 
et al. 2019; Ameray et al. 2021; Quirion et al. 2021). Our 
study has highlighted how C sequestration of decidu-
ous and mixed forest ecosystems in eastern North 

America, specifically in the Great Lakes region, might 
be impacted by a major natural disturbance event. Such 
natural disturbance events are expected to increase in 
frequency and intensity in the future due to climate 
change (Pureswaran et  al. 2018; IPCC 2021; Harvey 
et  al. 2022; Kalamandeen et  al. 2023). They will have 
adverse consequences for biological C sinks to offset 
greenhouse gases (GHG) emissions to achieve net zero 
C emission gaols.

Our study also showed that in the Great Lakes region, 
conifer forests have much greater capacity for C seques-
tration as compared to deciduous and mixed forests due 
to their longer growth period and conducive environmen-
tal conditions in the region (Payne et  al. 2019;  Beames-
derfer et  al. 2020). Sustainable management of both 
deciduous and conifer forests may help to conserve and 
futher enhanc C uptake capacity of these forests. In this 
regard, our study provides systematic methodology and 
road map to monitor and quantify the growth and C 
sequestration of all major vegetation ecosystems in the 
region, including conifer, deciduous and mixed forests 
as well as agricultural lands at high (10 × 10  m2) spatial 
resolution. Because most inset infestations are speciess 
specific and some of them occur for short periods such 
as spongy moth infestations, it becomes very challeng-
ing to accuratly quantify their impacts. Our utlizaion of 
high-resolution Sentinel-2 satellite imagery and a light 
use efficiency (LUE) model to estimate GPP for the whole 
region was a unique effort which provided a quantitative 
assessment of the photosynthetic C uptake loss because 
of the large scale nature of this infestation. It showed that 
2021 infestation caused 4.84 and 2.6 t C ha−1 reduction 
of C uptake in deciduous and mixed forests, respectively. 
This was a substantial potential C sequestration loss, 
considering the mean annual GPP of 14.0  t  C  ha−1 for 
Canada (Gonsamo et al. 2013; Chen et al. 2020) and 12.25 
t C ha−1 for USA (Turner et  al. 2003; Tang et  al. 2010). 
Our estimated total C uptake loss for the whole study 
area of 178,000 km2 in 2021 was 21.1 (21.4) megatons of 
carbon (Mt  C) when compared to 2020 (2022). This C 
loss amounted to ~ 11.5 (11.7)% of the Canada’s national 
GHG emission of 182.7 Mt C eq (670 Mt CO2 eq) or 52.3 
(52.1)% of the Province of Ontario’s GHG emissions of 
41.1 Mt C eq (150.6 Mt CO2 eq). However, the reader is 
cautioned about these extrapolated results because the 
defoliation is tree species dependent and there may be 
areas which many have not been severely impacted as 
well as the uncertainty associated with the remote sens-
ing derived GPP values. Our study has also highlighted 
the importance of future forest conservation and man-
agement practices that should account for climatic and 
disturbance stresses and help to enhance the sustainabil-
ity and resilience of forests to these stresses.
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Conclusions
This study quantified the impact of a serve spongy moth 
infestation on C sequestration in deciduous and mixed 
forest ecosystems in the Great Lakes region in Canada. 
By utilizing remotely sensed LAI as a key indicator, study 
assessed the onset and progression of spongy moth infes-
tation in 2021. Study results showed a substantial decline 
in GPP in deciduous and mixed forests in 2021 when 
compared to pre- and post-infestation years i.e. 2020 and 
2022. Total growing season GPP values were 1338, 868, 
and 1367 g C m−2 in deciduous forests over the study area 
from 2020 to 2022, respectively. Corresponding mean 
total growing season GPP values in mixed forests were 
1208, 932, and 1175  g C m−2 and in coniferous forests 
they were 1443, 1475, and 1438  g C m−2 in 2020, 2021 
and 2022, respectively. It showed 35 (36)% reduction in 
mean total growing season GPP in deciduous forests in 
2021 as compared to pre-infestation (post-infestation) 
years. Corresponding decline in mixed forests was 23 
(21)% in 2021. The whole study area (178,000 km2) 
experienced the total photosynthetic C uptake loss of 
21.1 (21.4) Mt C when compared to 2020 (2022). Study 
results also displayed that coniferous forests consistently 
exhibited higher GPP values, indicating their efficient C 
sequestration capabilities. The methods developed in our 
study and their application using high resolution remote 
sensing data will help to improve our understanding of 
C dynamics of forest ecosystems in response to natural 
disturbances. Our results also emphasize the vulnerabil-
ity of deciduous and mixed forests to insect infestations 
and signify the need to develop proactive and adaptive 
forest management practices that can enhance forest 
resilience to climate change. They will help to quantify 
regional-scale C balance and develop sustainable forest 
management practices to contribute to net zero C emis-
sion goals through nature-based solutions to mitigate cli-
mate change.
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